بناء نظام الدعم الفني التلقائي هو مهمة مهمة ولكن التحدي.من الناحية النظرية، للإجابة على سؤال المستخدم في منتدى فني، يتعين على خبير بشري استرداد المستندات ذات الصلة أولا، ثم اقرأها بعناية لتحديد مقتطف الإجابة.على الرغم من النجاح الهائل، فقد حقق الباحثون في التعامل مع أسئلة النطاق العامة الإجابة (ضمان الجودة)، وقد تم دفع الاهتمام الأقل بكثير مقابل التحقيق الفني في تشاينا.على وجه التحديد، تعاني الأساليب الموجودة من العديد من التحديات الفريدة (I) تتداخل السؤال والإجابة نادرا ما يتداخل بشكل كبير و (2) بحجم بيانات محدود للغاية.في هذه الورقة، نقترح إطارا جديدا لتعلم النقل العميق لمعالجة ضمان الجودة الفنية بشكل فعال عبر المهام والمجالات.تحقيقا لهذه الغاية، نقدم نهجا للتعلم المشترك قابل للتعديل لمهام استدعاء المستندات والقراءة.تجاربنا على Techqa توضح أداء فائق مقارنة بالطرق الحديثة.
Building automatic technical support system is an important yet challenge task. Conceptually, to answer a user question on a technical forum, a human expert has to first retrieve relevant documents, and then read them carefully to identify the answer snippet. Despite huge success the researchers have achieved in coping with general domain question answering (QA), much less attentions have been paid for investigating technical QA. Specifically, existing methods suffer from several unique challenges (i) the question and answer rarely overlaps substantially and (ii) very limited data size. In this paper, we propose a novel framework of deep transfer learning to effectively address technical QA across tasks and domains. To this end, we present an adjustable joint learning approach for document retrieval and reading comprehension tasks. Our experiments on the TechQA demonstrates superior performance compared with state-of-the-art methods.
المراجع المستخدمة
https://aclanthology.org/
مجردة معظم مجموعات مهام NLP والأصناف اللغوية تفتقر إلى أمثلة في المجال للتدريب الخاضع للإشراف بسبب قلة البيانات المشروحة. كيف يمكن النماذج العصبية أن تجعل تعميمات فعالة للعينة من مجموعات لغات المهام مع البيانات المتاحة للموارد المنخفضة؟ في هذا العمل،
الإجابة السؤالية (QA) هي واحدة من أكثر المهام التحدي والآثار في معالجة اللغة الطبيعية.ومع ذلك، ركزت معظم الأبحاث في ضمان الجودة على النطاق المفتوح أو الأبدية في حين أن معظم تطبيقات العالم الواقعي تعامل مع مجالات أو لغات محددة.في هذا البرنامج التعليمي
تم تطبيق نهج التعلم العميقة الخاضعة للإشراف على مربع الحوار الموجه في المهام وأثبت أنها فعالة لتطبيقات المجال واللغة المحدودة عند توفر عدد كاف من الأمثلة التدريبية. في الممارسة العملية، تعاني هذه الأساليب من عيوب التصميم الذي يحركه المجال ولغات أقل م
يسأل الأسئلة المفتوحة الإجابة على تحديد إجابات الأسئلة التي أنشأتها المستخدم في مجموعات ضخمة من المستندات. أساليب Readriever-Reverse Graph النهج هي أسران كبيرتان من الحلول لهذه المهمة. يطبق قارئ المسترد أولا تقنيات استرجاع المعلومات للحصول على تحديد
تحقق نماذج الرد على الأسئلة النصية الحالية (QA) أداء قوي على مجموعات اختبار داخل المجال، ولكن في كثير من الأحيان القيام بذلك عن طريق تركيب أنماط المستوى السطحي، لذلك فشلوا في التعميم لإعدادات خارج التوزيع. لجعل نظام ضمان الجودة أكثر قوة ومفهومة، نقوم