تقتصر مقاييس تقييم سؤال الفيديو (VIDQA) على إجابة كلمة واحدة أو اختيار عبارة من مجموعة ثابتة من العبارات.هذه المقاييس تحد من سيناريو تطبيق نماذج VIDQA.في هذا العمل، نستفيد الأدوار الدلالية المستمدة من أوصاف الفيديو لإخفاء عبارات معينة، لإدخال VIDQAP الذي يطرح VIDQA كامرأة تعبئة العبارة.لتمكين تقييم الجمل الإجابة، نحسب التحسين النسبي للإجابة المتوقعة مقارنة بسلسلة فارغة.لتقليل تأثير التحيز اللغوي في مجموعات بيانات VIDQA، نسترجع شريط فيديو له إجابة مختلفة لنفس السؤال.لتسهيل البحث، نقوم ببناء AttactNet-SRL-QA و Charads-SRL-QA ومقاييسهم عن طريق تمديد ثلاث نماذج لغة رؤية.نحن نقوم بإجراء تحليل مكثف ودراسات ablative لتوجيه العمل في المستقبل.الرمز والبيانات عامة.
Video Question Answering (VidQA) evaluation metrics have been limited to a single-word answer or selecting a phrase from a fixed set of phrases. These metrics limit the VidQA models' application scenario. In this work, we leverage semantic roles derived from video descriptions to mask out certain phrases, to introduce VidQAP which poses VidQA as a fill-in-the-phrase task. To enable evaluation of answer phrases, we compute the relative improvement of the predicted answer compared to an empty string. To reduce the influence of language bias in VidQA datasets, we retrieve a video having a different answer for the same question. To facilitate research, we construct ActivityNet-SRL-QA and Charades-SRL-QA and benchmark them by extending three vision-language models. We perform extensive analysis and ablative studies to guide future work. Code and data are public.
المراجع المستخدمة
https://aclanthology.org/
تحقق نماذج الرد على الأسئلة النصية الحالية (QA) أداء قوي على مجموعات اختبار داخل المجال، ولكن في كثير من الأحيان القيام بذلك عن طريق تركيب أنماط المستوى السطحي، لذلك فشلوا في التعميم لإعدادات خارج التوزيع. لجعل نظام ضمان الجودة أكثر قوة ومفهومة، نقوم
تقترح هذه الورقة معيارا للإجابة على الأسئلة (QA) للمنطق المكاني للنص اللغوي الطبيعي الذي يحتوي على ظواهر مكانية واقعية غير مغطاة بعمل مسبق وهو أمر صعب طرازات اللغة الحديثة (LM).نقترح طريقة الإشراف البعيدة لتحسين هذه المهمة.على وجه التحديد، نقوم بتصمي
معظم أساليب الإجابة على الأسئلة القائمة على المعرفة الحالية (KBQA) تعلم أولا تعيين السؤال المحدد في رسم بياني للاستعلام، ثم قم بتحويل الرسم البياني إلى استعلام قابل للتنفيذ للعثور على الإجابة.عادة ما يتم توسيع الرسم البياني للاستعلام تدريجيا من كيان
يقارن تقييم نماذج الرد على الأسئلة التوضيحية حول التوقعات النموذجية. ومع ذلك، اعتبارا من اليوم، فإن هذه المقارنة تعتمد في الغالب معجمية، وبالتالي تفتقد الإجابات التي لا تحتوي على تداخل جذري ولكن لا تزال مماثلة متشابهة دلالة، وبالتالي علاج الإجابات ال
تقدم التطورات الحديثة في QA في الهواء الطلق إلى نماذج قوية تعتمد على استرجاع كثيف، ولكن ركزت فقط على استرداد المقاطع النصية.في هذا العمل، نتعامل مع QA المجال المفتوح على الجداول لأول مرة، وإظهار أنه يمكن تحسين الاسترجاع من خلال المسترد المصمم للتعامل