ترغب بنشر مسار تعليمي؟ اضغط هنا

توليد الأخطاء النحوية بناء على شظايا مترجمة

Grammatical Error Generation Based on Translated Fragments

340   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نحن نؤدي الترجمة الآلة العصبية لشظايا الجملة من أجل إنشاء كميات كبيرة من البيانات التدريبية لتصحيح الخطأ النحوي الإنجليزي.تهدف أسلوبنا إلى محاكاة الأخطاء التي يرتكبها المتعلمين باللغة الثانية، وتنتج مجموعة واسعة من لغة الأسلوب غير الأصلية مقارنة بنموذج خط الأساس للحديث.نحن نفذ التقييم الكمي والنوعي.يتم عرض طريقتنا لتفوق خط الأساس على البيانات ذات نسبة عالية من الأخطاء.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في هذه الورقة، نقدم الإصدار اليوناني من خاطئ أداة التوضيح التلقائية (براينت وآخرون، 2017)، والتي أطلقنا عليها اسم Elerrant.وظائف خاطئة كتصنيف نوع من نوع الخطأ القاعدة واستخدامه كأداة التقييم الرئيسية للأنظمة المشاركة في BEA-2019 (براينت وآخرون، 2019) مهمة مشتركة.هنا، نناقش الاختلافات النحوية والمورفولوجية بين الإنجليزية واليونانية وكيف أثرت هذه الاختلافات على تطوير السائل.نحن نقدم أيضا أول كوربوس اليونانية الأصلية (GNC) و Wikiedits Corpus اليونانية (GWE)، ومجموعات بيانات تقييم جديدة مع أخطاء من المتعلمين اليونانيين الأصليين وتحرير صفحات الحديث في ويكيبيديا على التوالي.تستخدم هذان البيانات اثنين لتقييم السائل.هذه الورقة هي جزء وحيد من صورة أكبر توضح محاولة حل مشكلة لغات الموارد المنخفضة في NLP، في حالتنا اليونانية.
على الرغم من أن تصحيح الخطأ النحوي (GEC) قد حقق أداء جيدا على النصوص التي كتبها المتعلمون من اللغة الإنجليزية كلغة ثانية، فإن الأداء على نطاقات كثافة الأخطاء المنخفضة حيث لا يزال من الممكن تحسين النصوص عن طريق مكبرات الصوت الإنجليزية من مستويات مختلف ة من الكفاءة.في هذه الورقة، نقترح نهجا للتعلم المتعاقيض لتشجيع نموذج GEC لتعيين احتمال أعلى من الجملة الصحيحة مع تقليل احتمالية جمل غير صحيحة أن النموذج يميل إلى توليدها، وذلك لتحسين دقة النموذج.تظهر النتائج التجريبية أن نهجنا يحسن بشكل كبير أداء نماذج GEC في مجالات كثافة خطأ منخفضة، عند تقييمه على مجموعة بيانات CWEB القياسية.
تقدم هذه الورقة تقييما مقارنا لأربعة أنظمة ASR التجارية التي يتم تقييمها وفقا لجهود التحرير المطلوبة للوصول إلى "الجودة" القابلة للنشر ووفقا لعدد الأخطاء التي ينتجونها.لمهمة التوضيحية الخطأ، يتم اقتراح نموذج خطأ أخطاء خطأ في النسخ.تسعى هذه الدراسة أي ضا إلى فحص ما إذا كان هناك اختلاف في أداء هذه الأنظمة بين المتحدثين باللغة الإنجليزية الأصلية وغير الأصلية.تشير النتائج التجريبية إلى أنه من بين النظم الأربعة، تحصل Trint على أفضل الدرجات.ولوحظ أيضا أن معظم الأنظمة تؤدي بشكل ملحوظ بشكل ملحوظ مع مكبرات الصوت الأصلية وأن جميع الأنظمة أكثر عرضة لأخطاء الطلاقة.
في هذه الورقة، نقدم طريقة جديدة لتدريب نموذج تحسين الكتابة تتكيف مع لغة الكاتب الأولى (L1) التي تتجاوز تصحيح الخطأ النحوي (GEC).بدون استخدام بيانات التدريب المشروح، فإننا نعتمد فقط على نماذج اللغة المدربة مسبقا بشكل جيد مع الترجمة المرجانية المتوازية المحاذاة مع الترجمة الآلية.نحن نقيم نموذجنا مع شركة كورسا للأوراق الأكاديمية المكتوبة باللغة الإنجليزية من قبل علماء L1 البرتغالية و L1 الإسبان وشركة مرجعية من الخبراء الإنجليزية الأكاديمية.نظرا لأن طرازنا قادر على معالجة الكتابة المحددة التي أثرت على L1 والأظاهرة اللغوية أكثر تعقيدا من الأساليب الحالية، مما يتفوق على ما يمكن أن يحققه نظام GEC للحكومة في هذا الصدد.الكود والبيانات لدينا مفتوحة للباحثين الآخرين.
القواعد قوانين مستنبطة من كلام العرب الذين لم تفسد سلائقهم، و الشاهد يمثل روح القاعدة، إذ يضفي عليها الحياة و المتعة و الأصالة، و الكلام العربي الذي يستشهد به هو القرآن الكريم و الحديث النبوي الشريف و ما أُثر من كلام العرب شعراً و نثراً منذ الجاهلية حتى نهاية عصر الاحتجاج. و مصطلح الشاهد مصطلح عربي أصيل ظهر نتيجة خوف العرب على لغتهم من اللحن، و يعد القرآن الكريم الأصل الأول للاستشهاد، فهو الدعامة التي ترتكز عليها مصادر الاستشهاد الأخرى. يحاول هذا البحث دراسة العلاقة بين القاعدة النحوية و الشواهد، و إظهار دوافع الاستشهاد و طرقه و أركانه و مصادره، و الوقوف عند بعض مرادفاته كالاحتجاج و الاستدلال و التمثيل.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا