ترغب بنشر مسار تعليمي؟ اضغط هنا

ما وراء تصحيح الأخطاء النحوية: تحسين الكتابة الباحثية التي تأثرت L1 باللغة الإنجليزية باستخدام نماذج ترميز التشفير المدربة مسبقا

Beyond Grammatical Error Correction: Improving L1-influenced research writing in English using pre-trained encoder-decoder models

266   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في هذه الورقة، نقدم طريقة جديدة لتدريب نموذج تحسين الكتابة تتكيف مع لغة الكاتب الأولى (L1) التي تتجاوز تصحيح الخطأ النحوي (GEC).بدون استخدام بيانات التدريب المشروح، فإننا نعتمد فقط على نماذج اللغة المدربة مسبقا بشكل جيد مع الترجمة المرجانية المتوازية المحاذاة مع الترجمة الآلية.نحن نقيم نموذجنا مع شركة كورسا للأوراق الأكاديمية المكتوبة باللغة الإنجليزية من قبل علماء L1 البرتغالية و L1 الإسبان وشركة مرجعية من الخبراء الإنجليزية الأكاديمية.نظرا لأن طرازنا قادر على معالجة الكتابة المحددة التي أثرت على L1 والأظاهرة اللغوية أكثر تعقيدا من الأساليب الحالية، مما يتفوق على ما يمكن أن يحققه نظام GEC للحكومة في هذا الصدد.الكود والبيانات لدينا مفتوحة للباحثين الآخرين.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يعاني تصحيح الخطأ النحوي (GEC) من عدم وجود بيانات متوازية كافية. اقترحت دراسات حول GEC عدة طرق لتوليد بيانات زائفة، والتي تشمل أزواج من الجمل النحوية والنصيع بشكل مصطنع. حاليا، فإن النهج السائد لتوليد بيانات الزائفة هو الترجمة مرة أخرى (BT). وقد استخ دمت معظم الدراسات السابقة باستخدام BT نفس الهندسة المعمارية لكل من نماذج GEC و BT. ومع ذلك، فإن نماذج GEC لها اتجاهات تصحيح مختلفة اعتمادا على بنية نماذجها. وبالتالي، في هذه الدراسة، نقارن اتجاهات تصحيح نماذج GEC المدربة على البيانات الزائفة التي تم إنشاؤها بواسطة ثلاث نماذج BT مع بنية مختلفة، وهي المحول، CNN، و LSTM. تؤكد النتائج أن ميول التصحيح لكل نوع خطأ مختلفة لكل طراز BT. بالإضافة إلى ذلك، يمكننا التحقيق في ميول التصحيح عند استخدام مجموعة من البيانات الزائفة الناتجة عن نماذج BT مختلفة. نتيجة لذلك، نجد أن مجموعة من نماذج BT المختلفة تتحسن أو تحسن أداء كل نوع من نوع الخطأ مقارنة باستخدام نموذج BT واحد مع بذور مختلفة.
على الرغم من أن تصحيح الخطأ النحوي (GEC) قد حقق أداء جيدا على النصوص التي كتبها المتعلمون من اللغة الإنجليزية كلغة ثانية، فإن الأداء على نطاقات كثافة الأخطاء المنخفضة حيث لا يزال من الممكن تحسين النصوص عن طريق مكبرات الصوت الإنجليزية من مستويات مختلف ة من الكفاءة.في هذه الورقة، نقترح نهجا للتعلم المتعاقيض لتشجيع نموذج GEC لتعيين احتمال أعلى من الجملة الصحيحة مع تقليل احتمالية جمل غير صحيحة أن النموذج يميل إلى توليدها، وذلك لتحسين دقة النموذج.تظهر النتائج التجريبية أن نهجنا يحسن بشكل كبير أداء نماذج GEC في مجالات كثافة خطأ منخفضة، عند تقييمه على مجموعة بيانات CWEB القياسية.
تحدث نماذج اللغات القائمة على المحولات الحديثة ثورة في NLP. ومع ذلك، كانت الدراسات الحالية في النمذجة اللغوية مع بيرت تقتصر في الغالب على المواد باللغة الإنجليزية ولا تدفع اهتماما كافيا لمعرفة اللغة الضمنية باللغة، مثل الأدوار الدلالية والتفترض واللب ن، والتي يمكن الحصول عليها من قبل النموذج أثناء التدريب. وبالتالي، فإن الهدف من هذه الدراسة هو فحص السلوك لنموذج الموديل في مهمة النمذجة اللغوية الملثمين ولتقديم التفسير اللغوي إلى الآثار والأخطاء غير المتوقعة التي ينتجها النموذج. لهذا الغرض، استخدمنا مجموعة بيانات جديدة باللغة الروسية بناء على النصوص التعليمية للمتعلمين باللغة الروسية والمصفحة بمساعدة الشقوق الوطنية للغة الروسية. من حيث مقاييس الجودة (نسبة الكلمات، ذات الصلة دلالة الكلمة المستهدفة)، يتم التعرف على بيرت متعددة اللغات كأفضل نموذج. بشكل عام، كل طراز لديه نقاط قوة متميزة فيما يتعلق بظاهرة لغوية معينة. هذه الملاحظات لها آثار ذات مغزى على البحث في اللغويات المطبقة والبيتاجوجية، والمساهمة في تطوير نظام الحوار، وجعل التمارين التلقائية، وتجول النص، ويمكن أن يحتمل أن يحسن جودة التقنيات اللغوية الحالية
النصوص القانونية تستخدم بشكل روتيني المفاهيم التي يصعب فهمها.يعتمد المحامون على معنى هذه المفاهيم من جانب أمور أخرى، والتحقيق بعناية في كيفية استخدامها في الماضي.العثور على قصاصات نصية تذكر مفهوم معين بطريقة مفيدة ومملة واسعة من الوقت، وبالتالي مكلفة .لقد جمعنا مجموعة بيانات قدرها 26،959 جمل، من قرارات القضية القانونية، وعلقتهم من حيث فائدتهم لشرح مفاهيم قانونية مختارة.باستخدام DataSet نقوم بدراسة فعالية نماذج المحولات المدربة مسبقا على لغة بلغة كبيرة للكشف عن أي من الجمل مفيدة.في ضوء تنبؤات النماذج، نقوم بتحليل الخصائص اللغوية المختلفة للجمل التوضيحية وكذلك علاقتها بالمفهوم القانوني الذي يجب تفسيره.نظهر أن النماذج القائمة على المحولات قادرة على تعلم ميزات متطورة بشكل مدهش وتتفوق على النهج المسبقة للمهمة.
يتعين على نماذج اللغة المدربة مسبقا (PRLM) لإدارة وحدات الإدخال بعناية عند التدريب على نص كبير جدا مع مفردات تتكون من ملايين الكلمات. أظهرت الأعمال السابقة أن دمج معلومات المسيح على مستوى الأمان بشأن الكلمات المتتالية في التدريب المسبق يمكن أن تحسن أ داء PRLMS. ومع ذلك، بالنظر إلى أن أدلة المسكنات المستفادة مقدمة وإثباتها في التدريب المسبق، فإن الطرق السابقة تستغرق وقتا طويلا ونقص المرونة. لتخفيف الإزعاج، تقدم هذه الورقة طريقة رواية تمتد دقيقة لضبط PRLMS، مما يسهل إعداد SPES يتم تحديده على تكيفه بواسطة مهام معينة من المصب أثناء مرحلة الضبط الجميلة. بالتفصيل، سيتم تجزئة أي جمل تتم معالجتها من قبل PRLM في تمديدات متعددة وفقا لقاموس ما قبل العينات. ثم سيتم إرسال معلومات التجزئة من خلال وحدة CNN الهرمية مع مخرجات التمثيل من PRLM وتولد في نهاية المطاف تمثيلا محسن. تشير التجارب على معيار الغراء إلى أن طريقة ضبط الدقيقة المقترحة تعزز بشكل كبير PRLM، وفي الوقت نفسه، تقدم المزيد من المرونة بطريقة فعالة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا