ﻻ يوجد ملخص باللغة العربية
The very significant growth of the wireless communication industry has spawned tremendous interest in the development of high performances radio frequencies (RF) components. Micro Electro Mechanical Systems (MEMS) are good candidates to allow reconfigurable RF functions such as filters, oscillators or antennas. This paper will focus on the MEMS electromechanical resonators which show interesting performances to replace SAW filters or quartz reference oscillators, allowing smaller integrated functions with lower power consumption. The resonant frequency depends on the material properties, such as Youngs modulus and density, and on the movable mechanical structure dimensions (beam length defined by photolithography). Thus, it is possible to obtain multi frequencies resonators on a wafer. The resonator performance (frequency, quality factor) strongly depends on the environment, like moisture or pressure, which imply the need for a vacuum package. This paper will present first resonator mechanisms and mechanical behaviors followed by state of the art descriptions with applications and specifications overview. Then MEMS resonator developments at STMicroelectronics including FEM analysis, technological developments and characterization are detailed.
This paper reports on the systematic electromechanical characterization of a new three-axial force sensor used in dimensional metrology of micro components. The siliconbased sensor system consists of piezoresistive mechanicalstress transducers integr
The effect of mechanical fatigue on structural performances of gold devices is investigated. The pull-in voltage of special testing micro-systems is monitored during the cyclical load application. The mechanical collapse is identified as a dramatic l
A simple and fast process for micro-electromechanical (MEM) resonators with deep sub-micron transduction gaps in thin SOI is presented in this paper. Thin SOI wafers are important for advanced CMOS technology and thus are evaluated as resonator subst
In this paper, an architecture designed for electrical measurement of the quality factor of MEMS resonators is proposed. An estimation of the measurement performance is made using PSPICE simulations taking into account the components non-idealities.
A new Room Temperature (RT) 0-level vacuum package is demonstrated in this work, using amorphous silicon (aSi) as sacrificial layer and SiO2 as structural layer. The process is compatible with most of MEMS resonators and Resonant Suspended-Gate MOSFE