ترغب بنشر مسار تعليمي؟ اضغط هنا

0-level Vacuum Packaging RT Process for MEMS Resonators

258   0   0.0 ( 0 )
 نشر من قبل EDA Publishing Association
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A new Room Temperature (RT) 0-level vacuum package is demonstrated in this work, using amorphous silicon (aSi) as sacrificial layer and SiO2 as structural layer. The process is compatible with most of MEMS resonators and Resonant Suspended-Gate MOSFET [1] fabrication processes. This paper presents a study on the influence of releasing hole dimensions on the releasing time and hole clogging. It discusses mass production compatibility in terms of packaging stress during back-end plastic injection process. The packaging is done at room temperature making it fully compatible with IC-processed wafers and avoiding any subsequent degradation of the active devices.



قيم البحث

اقرأ أيضاً

195 - H. Mathias 2008
In this paper, an architecture designed for electrical measurement of the quality factor of MEMS resonators is proposed. An estimation of the measurement performance is made using PSPICE simulations taking into account the components non-idealities. An error on the measured Q value of only several percent is achievable, at a small integration cost, for sufficiently high quality factor values (Q > 100).
A simple and fast process for micro-electromechanical (MEM) resonators with deep sub-micron transduction gaps in thin SOI is presented in this paper. Thin SOI wafers are important for advanced CMOS technology and thus are evaluated as resonator subst rates for future co-integration with CMOS circuitry on a single chip. As the transduction capacitance scales with the resonator thickness, it is important to fabricate deep sub-micron trenches in order to achieve a good capacitive coupling. Through the combination of conventional UV-lithography and focused ion beam (FIB) milling the process needs only two lithography steps, enabling therefore a way for fast prototyping of MEM-resonators. Different FIB parameters and etching parameters are compared in this paper and their effect on the process are reported.
A novel open waveguide cavity resonator is presented for the combined variable frequency microwave curing of bumps, underfills and encapsulants, as well as the alignment of devices for fast flip-chip assembly, direct chip attach (DCA) or wafer-scale level packaging (WSLP). This technology achieves radio frequency (RF) curing of adhesives used in microelectronics, optoelectronics and medical devices with potential simultaneous micron-scale alignment accuracy and bonding of devices. In principle, the open oven cavity can be fitted directly onto a flip-chip or wafer scale bonder and, as such, will allow for the bonding of devices through localised heating thus reducing the risk to thermally sensitive devices. Variable frequency microwave (VFM) heating and curing of an idealised polymer load is numerically simulated using a multi-physics approach. Electro-magnetic fields within a novel open ended microwave oven developed for use in micro-electronics manufacturing applications are solved using a de icated Yee scheme finite-difference time-domain (FDTD) solver. Temperature distribution, degree of cure and thermal stresses are analysed using an Unstructured Finite Volume method (UFVM) multi-physics package. The polymer load was meshed for thermophysical analysis, whilst the microwave cavity - encompassing the polymer load - was meshed for microwave irradiation. The two solution domains are linked using a cross-mapping routine. The principle of heating using the evanescent fringing fields within the open-end of the cavity is demonstrated. A closed loop feedback routine is established allowing the temperature within a lossy sample to be controlled. A distribution of the temperature within the lossy sample is obtained by using a thermal imaging camera.
In this research, a novel contact resistance model for the flat panel display (FPD) packaging based on the within layer parallel and between layers series resistance concepts was proposed. The FJ2530 anisotropic conductive films (ACF) by Sony Inc. co ntaining the currently smallest 3micron conductive particles was used to conduct the experiments to verify the accuracy of the proposed model. Calculated resistance of the chip-on-glass (COG) packaging by the proposed model is 0.163Omega. It is found that the gold bump with 0.162Omega resistance play the major role of the overall resistance. Although the predicted resistance by the proposed model is only one third of the experimentally measured value, it has been three-fold improvement compared to the existing models.
154 - C. Durand 2008
The very significant growth of the wireless communication industry has spawned tremendous interest in the development of high performances radio frequencies (RF) components. Micro Electro Mechanical Systems (MEMS) are good candidates to allow reconfi gurable RF functions such as filters, oscillators or antennas. This paper will focus on the MEMS electromechanical resonators which show interesting performances to replace SAW filters or quartz reference oscillators, allowing smaller integrated functions with lower power consumption. The resonant frequency depends on the material properties, such as Youngs modulus and density, and on the movable mechanical structure dimensions (beam length defined by photolithography). Thus, it is possible to obtain multi frequencies resonators on a wafer. The resonator performance (frequency, quality factor) strongly depends on the environment, like moisture or pressure, which imply the need for a vacuum package. This paper will present first resonator mechanisms and mechanical behaviors followed by state of the art descriptions with applications and specifications overview. Then MEMS resonator developments at STMicroelectronics including FEM analysis, technological developments and characterization are detailed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا