ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromechanical Reliability Testing of Three-Axial Silicon Force Sensors

307   0   0.0 ( 0 )
 نشر من قبل EDA Publishing Association
 تاريخ النشر 2007
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reports on the systematic electromechanical characterization of a new three-axial force sensor used in dimensional metrology of micro components. The siliconbased sensor system consists of piezoresistive mechanicalstress transducers integrated in thin membrane hinges supporting a suspended flexible cross structure. The mechanical behavior of the fragile micromechanical structure isanalyzed for both static and dynamic load cases. This work demonstrates that the silicon microstructure withstands static forces of 1.16N applied orthogonally to the front-side of the structure. A statistical Weibull analysis of the measured data shows that these values are significantly reduced if the normal force is applied to the back of the sensor. Improvements of the sensor system design for future development cycles are derived from the measurement results.

قيم البحث

اقرأ أيضاً

126 - C. Durand 2008
The very significant growth of the wireless communication industry has spawned tremendous interest in the development of high performances radio frequencies (RF) components. Micro Electro Mechanical Systems (MEMS) are good candidates to allow reconfi gurable RF functions such as filters, oscillators or antennas. This paper will focus on the MEMS electromechanical resonators which show interesting performances to replace SAW filters or quartz reference oscillators, allowing smaller integrated functions with lower power consumption. The resonant frequency depends on the material properties, such as Youngs modulus and density, and on the movable mechanical structure dimensions (beam length defined by photolithography). Thus, it is possible to obtain multi frequencies resonators on a wafer. The resonator performance (frequency, quality factor) strongly depends on the environment, like moisture or pressure, which imply the need for a vacuum package. This paper will present first resonator mechanisms and mechanical behaviors followed by state of the art descriptions with applications and specifications overview. Then MEMS resonator developments at STMicroelectronics including FEM analysis, technological developments and characterization are detailed.
110 - Patrick Sangouard 2008
This work relates to a novel piezoelectric transformer to be used in an autonomous sensor unit, possibly in conjunction with a RF-MEMS retro-modulator.
268 - Francesco Pace 2007
We study the reliability of dark-matter halo detections with three different linear filters applied to weak-lensing data. We use ray-tracing in the multiple lens-plane approximation through a large cosmological simulation to construct realizations of cosmic lensing by large-scale structures between redshifts zero and two. We apply the filters mentioned above to detect peaks in the weak-lensing signal and compare them with the true population of dark matter halos present in the simulation. We confirm the stability and performance of a filter optimized for suppressing the contamination by large-scale structure. It allows the reliable detection of dark-matter halos with masses above a few times 1e13 M_sun/h with a fraction of spurious detections below ~10%. For sources at redshift two, 50% of the halos more massive than ~7e13 M_sun/h are detected, and completeness is reached at ~2e14 M_sun/h.
The rapid incursion of new technologies such as MEMS and smart sensor device manufacturing requires new tailor-made packaging designs. In many applications these devices are exposed to humid environments. Since the penetration of moisture into the pa ckage may result in internal corrosion or shift of the operating parameters, the reliability testing of hermetically sealed packages has become a crucial question in the semiconductor industry.
Questions of fairness, robustness, and transparency are paramount to address before deploying NLP systems. Central to these concerns is the question of reliability: Can NLP systems reliably treat different demographics fairly and function correctly i n diverse and noisy environments? To address this, we argue for the need for reliability testing and contextualize it among existing work on improving accountability. We show how adversarial attacks can be reframed for this goal, via a framework for developing reliability tests. We argue that reliability testing -- with an emphasis on interdisciplinary collaboration -- will enable rigorous and targeted testing, and aid in the enactment and enforcement of industry standards.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا