ترغب بنشر مسار تعليمي؟ اضغط هنا

عازلة: تعلم سياسة الحوار الخاضعة للإشراف ضعيف: تقدير المكافآت للحوار متعدد الدوران

WeaSuL: Weakly Supervised Dialogue Policy Learning: Reward Estimation for Multi-turn Dialogue

608   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

لا ينبغي أن يؤدي نظام الحوار الذكي في إعداد متعدد المنعطف إلى إنشاء الاستجابات فقط من نوعية جيدة، ولكن يجب أن تولد أيضا الردود التي يمكن أن تؤدي إلى نجاح طويل الأجل للحوار. على الرغم من أن الأساليب الحالية تحسنت جودة الاستجابة، إلا أنها تنظر إلى الإشارات التدريبية الموجودة في بيانات الحوار. يمكننا الاستفادة من هذه الإشارات لتوليد بيانات التدريب الإشراف ضعيف لسياسة حوار التعلم ومقدر المكافآت، وجعل السياسة تتخذ إجراءات (يولد الردود) التي يمكن أن تتوقع الاتجاه المستقبلي للمحادثة الناجحة (مكافأة). نحاكي الحوار بين وكيل ومستخدم (على غرار وكيل مع هدف التعلم الخاضع للإشراف) للتفاعل مع بعضها البعض. يستخدم الوكيل حدودا ديناميكيا لإنشاء ردود متنوعة في المرتبة واستغلال الاستكشاف لتحديد عدد الردود الأعلى. يتم تقييم كل زوج عمل محاكي لحالة الدولة (يعمل كشروح ضعيفة) مع ثلاث وحدات الجودة: الدلالي ذات الصلة والتماسك الدلالي وتدفق متسق. تشير الدراسات التجريبية التي لديها معيارين إلى أن طرازنا يمكن أن نفذت بشكل كبير جودة الاستجابة وتؤدي إلى محادثة ناجحة على كل من التقييم التلقائي والحكم البشري.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

على الرغم من نجاح أنظمة الحوار العصبي في تحقيق أداء عال في مجلس الإدارة، لا يمكنهم تلبية متطلبات المستخدمين في الممارسة العملية، بسبب ضعف مهارات المنطق. السبب الأساسي هو أن معظم نماذج الحوار العصبي تلتقط فقط المعلومات النحوية والدلية، ولكنها تفشل في نموذج الاتساق المنطقي بين محفوظات الحوار والاستجابة الناتجة. في الآونة الأخيرة، تم اقتراح مهمة حوار جديدة متعددة الدوران، لتسهيل أبحاث التفكير الحوار. ومع ذلك، هذه المهمة صعبة، لأن هناك اختلافات طفيفة فقط بين الاستجابة غير المنطقية وتاريخ الحوار. كيفية حل هذا التحدي فعال لا يزال يستحق الاستكشاف. تقترح هذه الورقة نموذج مقارنة غرامة (FCM) لمعالجة هذه المشكلة. مستوحاة من سلوك الإنسان في فهم القراءة، يقترح تركيز آلية المقارنة على الاختلافات الجميلة في تمثيل كل مرشح استجابة. على وجه التحديد، يتم مقارنة كل تمثيل مرشح بالسجل بأكمله للحصول على تمثيل تناسق التاريخ. علاوة على ذلك، تعتبر إشارات الاتساق بين كل مرشح وتاريخ مكبر الصوت في قيادة نموذج يفضل مرشحا متسقا منطقيا مع منطق تاريخ المتكلم. أخيرا، يتم توظيف تمثيلات الاتساق أعلاه لإخراج قائمة التصنيفات من ردود المرشحين لتفويض الحوار متعدد الدوران. النتائج التجريبية على مجموعة بيانات الحوار العامة تظهر أن طريقتنا تحصل على درجات أعلى تصنيف من النماذج الأساسية.
تهدف تقدير الجودة (QE) من الترجمة الآلية (MT) إلى تقييم جودة الجمل التي ترجمتها الجهاز دون مراجع وهي مهمة في التطبيقات العملية ل MT.تتطلب Training Models QE بيانات موازية ضخمة بأشرفة توضيحية ذات جودة يدوية، وهي تستغرق وقتا طويلا ومكثفة العمالة للحصول عليها.لمعالجة مسألة عدم وجود بيانات تدريب مشروح، تحاول الدراسات السابقة تطوير أساليب QE غير المدعومة.ومع ذلك، يمكن تطبيق عدد قليل جدا منهم على مهام QE على مستوى الجملة والطريق، وقد تعاني من الضوضاء في البيانات الاصطناعية.لتقليل الآثار السلبية للضوضاء، نقترح طريقة للإشراف ذاتي لكل من QE من كل من QE على مستوى الكلمة والطريق، والتي تنفذ تقدير الجودة من خلال استعادة الكلمات المستهدفة الملثمين.تظهر النتائج التجريبية أن أسلوبنا تتفوق على الطرق السابقة غير الخاضعة للرقابة في العديد من مهام QE في أزواج ومجال بلغات مختلفة.
يعد إعادة صياغة نص إعادة صياغة مهمة NLP طويلة الأمد لديها تطبيقات متنوعة على مهام NLP المصب. ومع ذلك، تعتمد فعالية الجهود الحالية في الغالب على كميات كبيرة من البيانات الذهبية المسمى. على الرغم من أن المساعي غير الخاضعة للإشعال قد اقترحت تخفيف هذه ال مسألة، إلا أنها قد تفشل في توليد صياغة هادفة بسبب عدم وجود إشارات الإشراف. في هذا العمل، نذهب إلى أبعد من النماذج الحالية واقتراح نهج رواية لتوليد صياغة عالية الجودة مع بيانات الإشراف الضعيف. على وجه التحديد، نتعامل مع مشكلة توليد إعادة صياغة الإشراف ضعيفا من خلال: (1) الحصول على جمل متوازية ضعيفة وفرة عن طريق توسيع إعادة صياغة الزائفة القائمة على استرجاع؛ و (2) تطوير إطار تعليمي التعلم إلى تحديد عينات قيمة تدريجيا لضبط النموذج اللغوي المدرب مسبقا في مهمة إعادة توجيهها مسبقا في مهمة إعادة الصياغة الخطية. نوضح أن نهجنا يحقق تحسينات كبيرة على النهج القائمة غير المدمرة، وهو ما يمكن قابلة للمقارنة في الأداء مع أحدث من الفنون المغلفة.
أظهر تعلم التعزيز العميق إمكانات كبيرة في سياسات الحوار التدريبية. ومع ذلك، فإن أدائها المواتي يأتي بتكلفة العديد من جولات التفاعل. تعتمد معظم أساليب سياسة الحوار الحالية على نظام تعليمي واحد، في حين أن الدماغ البشري يحتوي على نظامين لتعلم وذاكرة متخ صصين، يدعمان لإيجاد حلول جيدة دون الحاجة إلى أمثلة غزيرة. مستوحاة من الدماغ البشري، تقترح هذه الورقة إطار عمل لتعلم السياسات التكميلي الرواية (CPL)، والتي تستغل المزايا التكميلية لسياسة الذاكرة العرضية (EM) وسياسة شبكة Q-Network (DQN) العميقة لتحقيق تعلم سياسة حوار سريعة وفعالة وبعد من أجل التنسيق بين السياسة، اقترحنا وحدة تحكم الثقة للسيطرة على الوقت التكميلي وفقا لفعولتها النسبية في مراحل مختلفة. علاوة على ذلك، يتم اقتراح اتصال الذاكرة وتقليم الوقت لضمان التعميم المرن والتكيف للسياسة EM في مهام الحوار. تظهر النتائج التجريبية على ثلاث مجموعات بيانات الحوار أن طريقتنا تتفوق بشكل كبير على الطرق الحالية التي تعتمد على نظام تعليمي واحد.
يجلب الفهم القراءة آلة حوار متعدد الأحزاب (MRC) تحديا هائلا لأنه ينطوي على مكبرات صوت متعددة في حوار واحد، مما أدى إلى تدفقات معلومات المتكلم المعقدة وسياقات الحوار الصاخبة.لتخفيف هذه الصعوبات، تركز النماذج السابقة على كيفية دمج هذه المعلومات باستخدا م الوحدات النمطية المستندة إلى الرسم البياني المعقدة والبيانات الإضافية المسمى يدويا، والتي عادة ما تكون نادرة في السيناريوهات الحقيقية.في هذه الورقة، نقوم بتصميم مهام التنبؤ ذات الإشراف الذاتي والخالية من العمالة في العمل على المتكلم والكلام الرئيسي للنموذج الضمني لتدفقات معلومات المتكلم، والتقاط أدلة بارزة في حوار طويل.تبرر النتائج التجريبية على مجموعة من مجموعات البيانات القياسية لفعالية أسلوبنا على أساس الأساس التنافسي والنماذج الحديثة الحالية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا