ترغب بنشر مسار تعليمي؟ اضغط هنا

نمذجة تطور حواس الكلمات مع تخطيطات الموجهة نحو القوة لشبكات الحدوث المشترك

Modeling the Evolution of Word Senses with Force-Directed Layouts of Co-occurrence Networks

333   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تتطور اللغات بمرور الوقت ومعنى الكلمات التحول.علاوة على ذلك، يمكن أن تحتوي الكلمات الفردية على حواس متعددة.ومع ذلك، غالبا ما تعكس نماذج اللغة الحالية فقط معنى كلمة واحدة لكل كلمة ولا تعكس التغييرات الدلالية بمرور الوقت.في حين أن هناك نماذج لغة يمكن أن تكون إما نموذج التغيير الدلالي من الكلمات أو حواس الكلمات المتعددة، لا يغطي أي منها كلا الجانبين في وقت واحد.نقترح خوارزمية تخطيط رسم بياني من القوات الرواية لرسم شبكة من الكلمات التي تحدث كثيرا في كثير من الأحيان.بهذه الطريقة، نحن قادرون على استخدام الرسم البياني المرسوم لتصور تطور حواس الكلمات.بالإضافة إلى ذلك، نأمل أن نمذجة بشكل مشترك التغيير الدلالي والحواس المتعددة من الكلمات النتائج في تحسينات للمهام الفردية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تحسنت أداء أنظمة NMT بشكل كبير في السنوات القليلة الماضية ولكن ترجمة الكلمات متعددة الإحساس لا تزال تشكل تحديا. نظرا لأن حواس الكلمات ليست ممثلة بشكل موحد في الشركة الموازية المستخدمة للتدريب، فهناك استخدام مفرط من المعنى الأكثر شيوعا في إخراج MT. في هذا العمل، نقترح CMBT (الترجمة ذات الاحتياط بالسياقة)، ​​وهو نهج لتحسين ترجمة كلمة متعددة الشعور بالاستفادة من تمثيل الكلمات السياقية المتبادلة المدربة مسبقا (CCWRS). بسبب حساسية السياق الخاصة بهم وبياناتها السابقة للتدريب الكبيرة، يمكن ل CCWRS الوصول بسهولة إلى حواس الكلمات المفقودة أو نادرة جدا في ولاية فورانيا المستخدمة لتدريب MT. على وجه التحديد، تطبق CMBT تحريض معجم ثنائي اللغة على CCWRS الجمل المستهدفة ذات المحور المنطقي من مجموعة بيانات أحادية الأحادية، ثم يترجم هذه الجمل لإنشاء كورب موازية زائفة كبيانات تدريبية إضافية لنظام MT. نحن نختبر جودة الترجمة من الكلمات الغامضة على جناح اختبار المخاط المخاطي، والتي تم بناؤها لاختبار فعالية حذف كلمة معنى الكلمة لأنظمة MT. نظهر أن نظامنا يتحسن على ترجمة حواس كلمة متعددة الترددات الصعبة والثانية.
أصبح نص قصير في الوقت الحاضر أشكالا أكثر عصرية من البيانات النصية، على سبيل المثال، منشورات Twitter، عناوين الأخبار ومراجعات المنتجات. يلعب استخراج الموضوعات الدلالية من النصوص القصيرة دورا مهما في مجموعة واسعة من تطبيقات NLP، ومصمم الموضوع العصبي ال آن أداة رئيسية لتحقيقها. بدافع من تعلم موضوعات أكثر متماسكا ودلاليا، في هذه الورقة نطور نموذج موضوع عصبي رواية يدعى طراز موضوع الرسم البياني المزدوج Word (DWGTM)، والذي يستخرج الموضوعات من الرسوم البيانية المرتبطة بالكلمة المتزامنة وترابط العلاقة الدلالية. لتكون محددة، نتعلم ميزات كلمة من الرسم البياني العالمي للكلمة المشتركة، وذلك لاستيعاب معلومات حدوث كلمة غنية؛ ثم نقوم بإنشاء ميزات نصية مع ميزات Word، وإطعامها في شبكة تشفير للحصول على نسب موضوعية لكل نص؛ أخيرا، نعيد إعادة بناء الرسوم البيانية الرسمية والكلمات الرسم البياني مع التوزيعات الموضعية وميزات Word، على التوالي. بالإضافة إلى ذلك، لالتقاط دلالات الكلمات، نقوم أيضا بتطبيق ميزات Word لإعادة بناء الرسم البياني للعلاقة الدلالية كلمة محسوبة بواسطة Adgeddings المدربة للكلمة المدربة مسبقا. بناء على هذه الأفكار، نقوم بصياغة DWGTM في نموذج الترميز التلقائي وتدريبه بكفاءة مع روح الاستدلال التباين العصبي. تتحقق النتائج التجريبية التي يمكنها توليد DWGTM موضوعات أكثر متماسكة من النماذج الأساسية من طرازات موضوع الأساس.
معظم اللغات الطبيعية لها ترتيب كلمة سائدة أو ثابتة.على سبيل المثال باللغة الإنجليزية، عادة ما يكون ترتيب الكلمة كائن فعال.يحاول هذا العمل شرح هذه الظاهرة بالإضافة إلى النتائج النموذجية الأخرى فيما يتعلق بترتيب الكلمات من منظور وظيفي.على وجه الخصوص، ن درس ما إذا كان ترتيب Word ثابت يوفر ميزة وظيفية، وشرح سبب انتشار هذه اللغات.تحقيقا لهذه الغاية، نفكر في نموذج تطوري من اللغة وإظهار، من الناحية النظرية واستخدام الخوارزميات الوراثية، أن اللغة ذات ترتيب كلمة ثابتة هي الأمثل.نوضح أيضا أن إضافة معلومات إلى الجملة، مثل علامات الحالة وتمييز الإسم العام، تقلل من الحاجة إلى ترتيب الكلمات الثابت، وفقا للنتائج النموذجية.
أجريت الدراسة خلال الفترة 2010-2012 في كلية الهندسة المدنية في جامعة تشرين , بهدف الحصول على سماد عضوي من (الحمأة مع المخلفات النباتية), و ذلك من خلال تخميرها على شكل كومة و ضمن جهاز معزول. شملت الدراسة تغير التركيب الفيزيائي و الكيميائي للمخلفات في أثناء عملية التخمير حيث وصلت درجة الحرارة في مركز الكومة إلى 70 درجة مئوية، و في الجهاز تجاوزت درجة الحرارة 70 درجة مئوية لتصل إلى 72 درجة مئوية, أما عن ال pH في المادة المخمرة فقد وصل إلى 7.4 في الكومة، و 7.45 في الجهاز, و انخفضت النسبة C/N من 30/1 إلى 18/1 للكومة، و 17/1 للجهاز, و تبين موت 99% من بيوض الديدان المعوية بعد 26 يوماً من بداية عملية التخمير عن طريق التكويم، و 97% من بيوض الديدان المعوية قد ماتت بعد 12 يوماً من بداية عملية التخمير في الجهاز.
فهم اللغة المنطوقة، عادة بما في ذلك اكتشاف النوايا وملء الفتحات، هو مكون أساسي لبناء نظام حوار منطوق. تظهر الأبحاث الحديثة نتائج واعدة من خلال التعلم المشترك بين هذين المهامتين بناء على حقيقة أن ملء الفتحة والكشف عن النوايا تشارك المعرفة الدلالية. عل اوة على ذلك، فإن آلية الاهتمام تعزز التعلم المشترك لتحقيق نتائج أحدث من الفن. ومع ذلك، فإن نماذج التعلم المشتركة الحالية تتجاهل الحقائق المهمة التالية: 1. لا يتم تتبع سياق فتحة طويلة الأجل بشكل فعال، وهو أمر حاسم لملء الفتحات المستقبلية. 2. يمكن أن تكون الفتحة وعلامات الكشف عن النية مجزية بشكل متبادل، ولكن التفاعل ثنائي الاتجاه بين ملء الفتحات والكشف عن النوايا لا يزال نادرا ما تم استكشافه. في هذه الورقة، نقترح نهجا جديدا لنموذج سياق فتحة طويلة الأجل واستخدام العلاقة الدلالية بالكامل بين الفتحات والمحالة. نعتمد شبكة الذاكرة ذات القيمة الرئيسية لنموذج سياق الفتحة ديناميكيا وتتبع علامات فتحة أكثر أهمية فك شفرة من قبل، والتي يتم تغذيتها بعد ذلك في وحدة فك التشفير الخاصة بنا للحصول على علامات الفتحة. علاوة على ذلك، يتم استخدام معلومات الذاكرة الدائرية لأداء الكشف عن النية، وتحسين المهام المتبادلة من خلال التحسين العالمي. تظهر التجارب على معيار ATIS و SHITS DataSets أن نموذجنا يحقق أداء حديثة وتفوق على طرق أخرى، خاصة بالنسبة لمهمة ملء الفتحة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا