ترغب بنشر مسار تعليمي؟ اضغط هنا

فهم اللغة المنطوقة لأنظمة الحوار الموجهة نحو المهام مع شبكات الذاكرة المعزز

Spoken Language Understanding for Task-oriented Dialogue Systems with Augmented Memory Networks

329   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

فهم اللغة المنطوقة، عادة بما في ذلك اكتشاف النوايا وملء الفتحات، هو مكون أساسي لبناء نظام حوار منطوق. تظهر الأبحاث الحديثة نتائج واعدة من خلال التعلم المشترك بين هذين المهامتين بناء على حقيقة أن ملء الفتحة والكشف عن النوايا تشارك المعرفة الدلالية. علاوة على ذلك، فإن آلية الاهتمام تعزز التعلم المشترك لتحقيق نتائج أحدث من الفن. ومع ذلك، فإن نماذج التعلم المشتركة الحالية تتجاهل الحقائق المهمة التالية: 1. لا يتم تتبع سياق فتحة طويلة الأجل بشكل فعال، وهو أمر حاسم لملء الفتحات المستقبلية. 2. يمكن أن تكون الفتحة وعلامات الكشف عن النية مجزية بشكل متبادل، ولكن التفاعل ثنائي الاتجاه بين ملء الفتحات والكشف عن النوايا لا يزال نادرا ما تم استكشافه. في هذه الورقة، نقترح نهجا جديدا لنموذج سياق فتحة طويلة الأجل واستخدام العلاقة الدلالية بالكامل بين الفتحات والمحالة. نعتمد شبكة الذاكرة ذات القيمة الرئيسية لنموذج سياق الفتحة ديناميكيا وتتبع علامات فتحة أكثر أهمية فك شفرة من قبل، والتي يتم تغذيتها بعد ذلك في وحدة فك التشفير الخاصة بنا للحصول على علامات الفتحة. علاوة على ذلك، يتم استخدام معلومات الذاكرة الدائرية لأداء الكشف عن النية، وتحسين المهام المتبادلة من خلال التحسين العالمي. تظهر التجارب على معيار ATIS و SHITS DataSets أن نموذجنا يحقق أداء حديثة وتفوق على طرق أخرى، خاصة بالنسبة لمهمة ملء الفتحة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تهدف هذه الورقة إلى تقديم نظرة عامة شاملة للتطورات الأخيرة في تتبع حكمة الحوار (DST) لأنظمة المحادثات الموجهة نحو المهام.نقدم المهمة، وخاصة البيانات الرئيسية التي تم استغلالها وكذلك مقاييس تقييمها، ونحن نحلل العديد من النهج المقترحة.نحن نميز بين نماذ ج DST غير الثابتة، والتي تتنبأ بمجموعة ثابتة من دول الحوار، ونماذج الأطباق الديناميكية، والتي يمكن أن تتنبؤ حوار الحوار حتى عندما تتغير عملية الأونولوجيا.ونناقش أيضا قدرة النموذج على تتبع النطاقات الفردية أو المتعددة والقياس إلى مجالات جديدة، سواء من حيث نقل المعرفة والتعلم الصفر.نحن نغطي فترة من عام 2013 إلى 2020، مما يدل على زيادة كبيرة في أساليب مجال متعددة، ومعظمها باستخدام نماذج اللغة المدربة مسبقا.
يتطلب تحسين سياسة الحوار عبر التعلم التعزيز عددا كبيرا من التفاعلات التدريبية، مما يجعل التعلم مع المستخدمين الحقيقيين الوقت المستهلكة ومكلفة. لذلك يعتمد العديد من الإعدادات على محاكاة المستخدم بدلا من البشر. لدى محاكاة المستخدم هذه مشاكلهم الخاصة. ف ي حين أن محاكاة المستخدمين المشفرة باليد، فقد ثبت أن محاكاة المستخدمين الذين يعتمدون على القواعد كافية في المجالات الصغيرة والبسيطة، لأن عدد القواعد المعقدة بسرعة أصلي. لا تزال محاكاة المستخدم التي يحركها بيانات البيانات، من ناحية أخرى، تعتمد على المجال. هذا يعني أن التكيف مع كل مجال جديد يتطلب إعادة تصميم وإعادة التدريب. في هذا العمل، نقترح محاكاة للمستخدم المستقل المستقل للمجال (TUS). لا يتم ربط هيكل TUS مجال معين، وتمكين تعميم المجال وتعلم سلوك المستخدم عبر المجال من البيانات. نحن نقارن TUS مع أحدث التقيمات التلقائية وكذلك الإنسان. يمكن أن يتنافس TUS مع محاكاة المستخدمين المستند إلى القواعد على المجالات المحددة مسبقا ويمكن أن يعممون إلى المجالات غير المرئية في أزياء صفرية.
يسمح التعلم المستمر في أنظمة الحوار الموجهة نحو المهام للنظام بإضافة مجالات ووظائف جديدة للعمل الإضافي بعد النشر، دون تكبد التكلفة العالية لإعادة النظر في النظام بأكمله في كل مرة. في هذه الورقة، نقترح أول معيار تعلم مستمر على الإطلاق لأنظمة الحوار ال موجهة نحو المهام مع أن يتم تعلم 37 نطما بشكل مستمر في إعدادات التعلم المعدلة والنهاية. بالإضافة إلى ذلك، نقوم بتنفيذ ومقارنة خطوط أساسيات التعلم المستمرة المتعددة، ونقترحنا طريقة معمارية بسيطة ولكنها فعالة تعتمد على المحولات المتبقية. نشير أيضا إلى أن الأداء العلوي للتعلم المستمر يجب أن يكون يعادل التعلم المتعدد المهام عند توفر البيانات من جميع المجال في وقت واحد. توضح تجاربنا أن الطريقة المعمارية المقترحة وإجراءات استراتيجية تستند إلى إعادة التشغيل بسيطة تؤدي بشكل أفضل، من خلال هامش كبير، مقارنة بتقنيات التعلم المستمرة الأخرى، وأسوأ قليلا قليلا من العلوي المتعدد التعلم العلوي أثناء كونه 20x بشكل أسرع في تعلم النطاقات الجديدة. نحن نبلغ أيضا العديد من المفاضلات من حيث استخدام المعلمة وحجم الذاكرة ووقت التدريب، وهي مهمة في تصميم نظام حوار موجه نحو المهام. يتم إصدار المعيار المقترح لتعزيز المزيد من البحث في هذا الاتجاه.
في أنظمة الحوار الموجهة نحو الأهداف، يقدم المستخدمون المعلومات من خلال قيم الفتحة لتحقيق أهداف محددة. عمليا، يمكن أن تكون بعض مجموعات قيم الفتحة غير صالحة وفقا للمعرفة الخارجية. على سبيل المثال، مزيج من بيتزا الجبن "(عنصر القائمة) وملفات تعريف الارتب اط OREO" (تتصدر) من كلام الإدخال يمكن أن أطلب بيتزا جبنة مع ملفات تعريف الارتباط Oreo على القمة؟ "تعويضات مثل هذه المجموعات غير الصالحة وفقا للقائمة من مطعم العمل. تسمح أنظمة الحوار التقليدية بإعدام قواعد التحقق من الصحة كخطوة بعد المعالجة بعد أن تم ملء الفتحات التي يمكن أن تؤدي إلى تراكم الخطأ. في هذه الورقة، نقوم بإضفاء الطابع الرسمي على قيود فتحة مدفوعة بالمعرفة وتقديم مهمة جديدة من اكتشاف انتهاك القيد مصحوبة ببيانات معايير. ثم نقترح طرق لإدماج المعرفة الخارجية في الكشف عن انتهاك الانتهاك في النظام والنموذج كمركز تصنيف نهاية إلى نهج ومقارنته لنهج خط أنابيب القواعد التقليدي. تجرب التجارب على مجاليين من مجموعة بيانات متعددة الأوجه من تحديات الكشف عن انتهاك القيود وتضع المرحلة للعمل في المستقبل والتحسينات.
في هذه الورقة، نقول أن أنظمة الحوار قادرة على شرح قراراتها بنشاط يمكنها الاستفادة من المنطق المعني.نحن نحفز سبب هذه الاستراتيجية المناسبة ودمجها ضمن إطار مدير الحوار المؤخري الخاص بنا على أساس المنطق الخطي.على وجه الخصوص، يتيح ذلك نظام الحوار تقديم إ جابات معقولة على السبب في الأسئلة التي تستعرضها المعلومات التي سبق إعطاءها بواسطة النظام.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا