ترغب بنشر مسار تعليمي؟ اضغط هنا

فصل الكلام متعدد اللكنات مع التعلم بالرصاص واحد

Multi-accent Speech Separation with One Shot Learning

347   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

فصل الكلام هو مشكلة في مجال معالجة الكلام التي تمت دراستها على قدم وساق مؤخرا.ومع ذلك، لم يكن هناك الكثير من العمل في دراسة سيناريو لفصل الكلام متعدد اللكنات.أثارت مكبرات الصوت غير المرئية لهجات جديدة والضوضاء مشكلة عدم تطابق المجال والتي لا يمكن حلها بسهولة عن طريق أساليب التدريب المشتركة التقليدية.وبالتالي، طبقنا MAML و FOMAML لمعالجة هذه المشكلة وحصلت على أعلى قيم SI-SILRI أعلى من التدريب المشترك على جميع لهجات غير مرئية تقريبا.أثبت ذلك أن هاتين الطريقتين لديها القدرة على توليد معلمات مدربة جيدا للتكييف مع مخاليط الكلام من مكبرات الصوت الجديدة ولوجزات.علاوة على ذلك، اكتشفنا أن Fomaml يحصل على أداء مماثل مقارنة بالماما مع توفير الكثير من الوقت.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

التراجع السريع للشبكات الاجتماعية عبر الإنترنت مثل YouTube، Facebook، Twitter يسمح للناس بالتعبير عن آرائهم على نطاق واسع على الإنترنت.ومع ذلك، في الوقت نفسه، يمكن أن يؤدي إلى زيادة في الصراع والكراهية بين المستهلكين في شكل حرية خطاب.لذلك، من الضروري اتخاذ طريقة تقوية إيجابية للبحث عن مشجعة، إيجابية، مساعدة، ومحتوى وسائل الإعلام الاجتماعية الداعمة.في هذه الورقة، نحن تصف نموذج برت محول من أجل الكشف عن الكلام عن الأمل للوصول والتنوع والاندماج، المقدمة لمهمة LT-ADI-2021 2. يحقق نموذجنا مرجحا معدل F1 مرجح من 0.93 على مجموعة الاختبار.
نقدم COTEXT، وهو نموذج ترميز ترميز مدرب مسبقا مدرب مسبقا، يتعلم السياق التمثيلي بين اللغة الطبيعية (NL) ولغة البرمجة (PL). باستخدام الإشراف الذاتي، تم تدريب COTEX مسبقا على لغة البرمجة الكبيرة لشركة Corpora لتعلم فهم عام للغة والرمز. يدعم COTEXT مهام NL-PL المصب مثل الرمز الملخص / الوثائق، وتوليد الرموز، والكشف عن العيوب، وتصحيح التعليمات البرمجية. نحن ندرب مشعك على مجموعات مختلفة من Corpus المتوفرة المتوفرة بما في ذلك البيانات BIMODAL 'و Unimodal'. هنا، بيانات BIMODAL هي مزيج من النصوص النصية والنصوص المقابلة، في حين أن البيانات غير المستخدمة هي مجرد مقتطفات رمز. نقيم أولا COTEXT مع التعلم متعدد المهام: نقوم بإجراء تلخيص الكود على 6 لغات برمجة مختلفة وصقل التعليمات البرمجية على كل من الحجم الصغير والمتوسط ​​المميز في DataSet Codexglue. كلنا إجراء تجارب مكثفة للتحقيق في COTEXT على مهام أخرى ضمن DataSet Codexglue، بما في ذلك توليد التعليمات البرمجية والكشف عن العيوب. نحن نتحمل باستمرار نتائج SOTA في هذه المهام، مما يدل على تنوع نماذجنا.
يحدد اكتشاف الموقف ما إذا كان مؤلف النص مؤهلا لصالح أو محايد هدف معين ويوفر رؤى قيمة في أحداث مهمة مثل تقنين الإجهاض. على الرغم من التقدم الكبير في هذه المهمة، فإن أحد التحديات المتبقية هو ندرة التعليقات التوضيحية. علاوة على ذلك، ركزت معظم الأعمال ال سابقة على تدريبا ثابتا على التسمية التي يتم فيها التخلص منها تشابه ذات معنى بين الفئات أثناء التدريب. لمعالجة هذه التحديات أولا، نقيم هدف متعدد المستهدف وإعدادات تدريب متعددة البيانات من خلال تدريب نموذج واحد على كل مجموعة بيانات ومجموعات من المجالات المختلفة، على التوالي. نظهر أن النماذج يمكن أن تتعلم المزيد من التمثيلات العالمية فيما يتعلق بالأهداف في هذه الإعدادات. ثانيا، يمكننا التحقيق في تقطير المعرفة في اكتشاف الموقف ومراقبة أن نقل المعرفة من نموذج المعلم إلى نموذج الطالب يمكن أن يكون مفيدا في إعدادات التدريب المقترحة. علاوة على ذلك، نقترح طريقة تقطير المعرفة التكيفية (AKD) تطبق تحجيم درجة الحرارة الخاصة بالمثيلات إلى المعلم والتنبؤات الطلابية. تشير النتائج إلى أن نموذج متعدد البيانات يعمل بشكل أفضل على جميع مجموعات البيانات ويمكن تحسينه من قبل AKD المقترح، مما يتفوق على أحدث حالة من الهامش الكبير. نحن نطلق علنا ​​كودنا.
أظهرت نماذج الترجمة الآلية غير التلقائية (NAT) تسريعا كبيرا للاستدلال، لكنها تعاني من دقة ترجمة أدنى. الممارسة الشائعة لمعالجة المشكلة هي نقل الترجمة الآلية التلقائي (في) معرفة نماذج NAT، على سبيل المثال، مع تقطير المعرفة. في هذا العمل، نحن نفترض وال تحقق تجريبيا من أن ترميز اللوائح في و NAT التقاط خصائص لغوية مختلفة من الجمل المصدر. لذلك، نقترح اعتماد التعلم متعدد المهام لنقل المعرفة إلى نماذج NAT من خلال تقاسم التشفير. على وجه التحديد، نأخذ النموذج في المهمة المساعدة لتعزيز أداء نموذج NAT. تظهر النتائج التجريبية على مجموعات بيانات WMT14 EN-DE و WMT16 EN-RO أن المهمة المتعددة المقترحة NAT تحقق تحسينات كبيرة على نماذج الأساس NAT. علاوة على ذلك، تؤكد الأداء الموجود على مجموعات بيانات WMT19 و WMT20 و WMT20 واسعة النطاق اتساق طريقةنا المقترحة. بالإضافة إلى ذلك، توضح النتائج التجريبية أن لدينا NAT متعددة المهام لدينا مكملة لتقطير المعرفة، وسيلة نقل المعرفة القياسية لل NAT.
في هذه الورقة، نصف نهجنا تجاه استخدام النماذج المدربة مسبقا لمهمة الكشف عن الكلام الأمل.شاركنا في المهمة 2: الكشف عن الكلام للأمل للتساوي والتنوع والإدماج في LT-EDI-2021 @ EACL2021.الهدف من هذه المهمة هو التنبؤ بحضور خطاب الأمل، إلى جانب وجود العينات التي لا تنتمي إلى نفس اللغة في مجموعة البيانات.نحن نصف نهجنا لضبط روبرتا من أجل الكشف عن الكلام على الأمل باللغة الإنجليزية ونهجنا لضبط XLM-Roberta من أجل الكشف عن الكلام في التاميل والمالايالام، وهو لغتين منخفضان من الموارد.نوضح أداء نهجنا على تصنيف النص في الأمل، غير الأمل وغير اللغة.تصنيفنا في المرتبة الأولى في اللغة الإنجليزية (F1 = 0.93)، الأول في التاميل (F1 = 0.61) و 3 في مالايالام (F1 = 0.83).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا