نقدم COTEXT، وهو نموذج ترميز ترميز مدرب مسبقا مدرب مسبقا، يتعلم السياق التمثيلي بين اللغة الطبيعية (NL) ولغة البرمجة (PL). باستخدام الإشراف الذاتي، تم تدريب COTEX مسبقا على لغة البرمجة الكبيرة لشركة Corpora لتعلم فهم عام للغة والرمز. يدعم COTEXT مهام NL-PL المصب مثل الرمز الملخص / الوثائق، وتوليد الرموز، والكشف عن العيوب، وتصحيح التعليمات البرمجية. نحن ندرب مشعك على مجموعات مختلفة من Corpus المتوفرة المتوفرة بما في ذلك البيانات BIMODAL 'و Unimodal'. هنا، بيانات BIMODAL هي مزيج من النصوص النصية والنصوص المقابلة، في حين أن البيانات غير المستخدمة هي مجرد مقتطفات رمز. نقيم أولا COTEXT مع التعلم متعدد المهام: نقوم بإجراء تلخيص الكود على 6 لغات برمجة مختلفة وصقل التعليمات البرمجية على كل من الحجم الصغير والمتوسط المميز في DataSet Codexglue. كلنا إجراء تجارب مكثفة للتحقيق في COTEXT على مهام أخرى ضمن DataSet Codexglue، بما في ذلك توليد التعليمات البرمجية والكشف عن العيوب. نحن نتحمل باستمرار نتائج SOTA في هذه المهام، مما يدل على تنوع نماذجنا.
We present CoTexT, a pre-trained, transformer-based encoder-decoder model that learns the representative context between natural language (NL) and programming language (PL). Using self-supervision, CoTexT is pre-trained on large programming language corpora to learn a general understanding of language and code. CoTexT supports downstream NL-PL tasks such as code summarizing/documentation, code generation, defect detection, and code debugging. We train CoTexT on different combinations of available PL corpus including both bimodal'' and unimodal'' data. Here, bimodal data is the combination of text and corresponding code snippets, whereas unimodal data is merely code snippets. We first evaluate CoTexT with multi-task learning: we perform Code Summarization on 6 different programming languages and Code Refinement on both small and medium size featured in the CodeXGLUE dataset. We further conduct extensive experiments to investigate CoTexT on other tasks within the CodeXGlue dataset, including Code Generation and Defect Detection. We consistently achieve SOTA results in these tasks, demonstrating the versatility of our models.
المراجع المستخدمة
https://aclanthology.org/
تعدد اللغات T5 Pretrains نموذج تسلسل إلى تسلسل على نصوص أحادية الأبعاد ضخمة، والتي أظهرت نتائج واعدة على العديد من المهام المتبقية اللغوية.في هذه الورقة، نحسن محول نقل النص إلى النص متعدد اللغات مع أزواج الترجمة (MT6).على وجه التحديد، نستكشف ثلاثة مه
برزت التعلم المتعدد المهام مع ترميز المحولات (MTL) كتقنية قوية لتحسين الأداء على المهام ذات الصلة عن كثب لكل من الدقة والكفاءة في حين أن السؤال لا يزال يبقى ما إذا كان من شأنه أن يؤدي ذلك على المهام المميزة أم لا بشكل جيد في الطبيعة أم لا. نقوم أولا
إن محول نقل النص إلى النص الأخير "'(T5) عند الاستفادة من تنسيق نصي إلى نص موحد ومقياس لتحقيق النتائج الحديثة على مجموعة واسعة من مهام NLP باللغة الإنجليزية.في هذه الورقة، نقدم MT5، وهو متغير متعدد اللغات من T5 الذي تم تدريبه مسبقا على مجموعة بيانات ج
أظهرت نماذج الترجمة الآلية غير التلقائية (NAT) تسريعا كبيرا للاستدلال، لكنها تعاني من دقة ترجمة أدنى. الممارسة الشائعة لمعالجة المشكلة هي نقل الترجمة الآلية التلقائي (في) معرفة نماذج NAT، على سبيل المثال، مع تقطير المعرفة. في هذا العمل، نحن نفترض وال
تهدف التصنيف متعدد الوسائط واسع النطاق إلى التمييز بين مختلف البيانات متعددة الوسائط، وقد لفت الانتباه بشكل كبير منذ العقد الماضي. في هذه الورقة، نقترح إطارا متعدد المهام في مجال التعلم لمهمة التصنيف المتعدد الوسائط، والتي تتكون من فرعين: فرع متعدد ا