ترغب بنشر مسار تعليمي؟ اضغط هنا

محول هرمي لنظم الحوار موجهة نحو المهام

Hierarchical Transformer for Task Oriented Dialog Systems

546   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

اكتسبت النماذج الإدارية لأنظمة الحوار اهتماما كبيرا بسبب النجاح الأخير من RNN والنماذج القائمة على المحولات في مهام مثل الإجابة على الأسئلة والتلخيص. على الرغم من أن مهمة استجابة الحوار ينظر إليها عموما على أنها تسلسل للتسلسل (SEQ2SEQ) المشكلة، فقد وجدت الباحثون في الماضي أنه يمثل تحديا لتدريب أنظمة الحوار باستخدام نماذج SEQ2SEQ القياسية. لذلك، لمساعدة النموذج على تعلم نطق حقيقي وميزات مستوى المحادثة، Sordoni et al. (2015B)، serban et al. (2016) بنية RNN الهرمية المقترحة، التي تم اعتمادها لاحقا من قبل العديد من أنظمة الحوار RNN الأخرى. مع النماذج القائمة على المحولات التي تسيطر على مشاكل SEQ2SeQ مؤخرا، فإن السؤال الطبيعي الذي يجب طرحه هو قابلية مفهوم التسلسل الهرمي في أنظمة الحوار المحول. في هذه الورقة، نقترح إطارا عمليا لترميز المحولات الهرمية وإظهار كيف يمكن تحويل محول قياسي إلى أي ترميز هرمي، بما في ذلك Hred و Hibert مثل النماذج، باستخدام أقنعة اهتمام مصممة خصيصا والترميزات الموضعية. نوضح أن الترميز الهرمي يساعد في تحقيق فهم لغوي أفضل في اللغة الطبيعية للسياق في النماذج القائمة على المحولات لأنظمة الحوار الموجهة نحو المهام من خلال مجموعة واسعة من التجارب.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

إن دمج قواعد المعرفة (KB) في أنظمة الحوار الموجهة نحو المهام الواحد أمرا صعبا، لأنها تتطلب تمثيل كيان KB بشكل صحيح، وهو مرتبط بسياق KB وحالات الحوار. تمثل الأعمال الحالية الكيان مع إدراك جزء من سياق KB فقط، والذي يمكن أن يؤدي إلى تمثيل أقل فعالية بسب ب فقدان المعلومات، ويلفح سلبا من أجل تناسبي KB وتوليد الاستجابة. لمعالجة هذه المشكلة، نستكشف من السياق بالكامل عن تمثيل الكيان من خلال إدراك جميع الكيانات والحوار ذات الصلة ديناميكيا. لتحقيق ذلك، نقترح، نقترح إطار محول محول في الذاكرة المعززة بالذاكرة (المذنب)، والتي تعامل KB كسلسلة وتزايد قناع ذاكرة جديدة لفرض الكيان على التركيز فقط على كياناتها ذات الصلة وحوار التاريخ، مع تجنب الهاء من الكيانات غير ذات الصلة. من خلال تجارب واسعة، نوضح أن إطار المنزول لدينا يمكن أن يحقق أداء فائقا على حالة الآداب.
يعد عدم وجود بيانات تدريبية المسمى للميزات الجديدة مشكلة شائعة في أنظمة الحوار في العالم الحقيقي المتغيرة بسرعة.كحل، نقترح نموذج توليد إعادة صياغة متعددة اللغات يمكن استخدامه لإنشاء كلمات جديدة للميزة المستهدفة واللغة المستهدفة.يمكن استخدام الكلام ال ذي تم إنشاؤه لزيادة بيانات التدريب الحالية لتحسين تصنيف نماذج وضع العلامات الفضائية.نحن نقيم جودة الكلام التي تم إنشاؤها باستخدام مقاييس التقييم الجوهرية وإجراء تجارب التقييم المصب مع اللغة الإنجليزية كلغة مصدر وتسع لغات مستهدفة مختلفة.تعرض طريقنا وعد عبر اللغات، حتى في إعداد طلقة صفرية حيث لا توجد بيانات بذرة متاحة.
يحدد اختيار استراتيجية مشاركة المعلمات في نماذج الترجمة الآلية متعددة اللغات مدى استخدام مساحة المعلمة الأمثلة، وبالتالي، تؤثر مباشرة على جودة الترجمة النهائية.وقد اقترح مؤخرا مختارة من الأشجار اللغوية التي تظهر درجة الرعاية بين اللغات المختلفة، كما تم اقتراح النهج العام الجديد لمشاركة المعلمة في الترجمة متعددة اللغات في الترجمة متعددة اللغات.تتمثل الفكرة الرئيسية في استخدام هذه التسلسلات الهرمية لغوية الخبراء كأساس للهندسة المعمارية متعددة اللغات: كلما زادت اللغتين، كلما زاد عدد المعلمات التي يشاركونها.في هذا العمل، نختبر هذه الفكرة باستخدام بنية المحولات وإظهار أنه على الرغم من النجاح في العمل السابق هناك مشاكل متأصلة لتدريب هذه النماذج الهرمية.نوضح أنه في حالة اتباع استراتيجية التدريب المختارة بعناية، يمكن للهندسة الهيكل الهرمية تفوق النماذج ثنائية اللغة ونماذج متعددة اللغات مع مشاركة المعلمات الكاملة.
نظرا لأن تكلفة وضع العلامات للوحدات المختلفة في أنظمة الحوار الموجهة نحو المهام (TOD) باهظ الثمن، فإن التحدي الرئيسي هو تدريب وحدات مختلفة بأقل قدر من البيانات المسمى. أظهرت نماذج اللغة المدربة مسبقا مؤخرا، نتائج واعدة واعدة لعدد قليل من التعلم في TO D. في هذه الورقة، نرتند نهجا للتدريب الذاتي للاستفادة من بيانات الحوار غير المسبق الوفيرة لزيادة تحسين النماذج المدربة للدولة المدربة مسبقا في سيناريوهات تعليمية قليلة لأنظمة TOD. على وجه التحديد، نقترح نهجا للتدريب الذاتي أن تستلم البيانات الأكثر ثقة أكثر ثقة لتدريب نموذج طالب أقوى. علاوة على ذلك، يقترح تقنية تكبير نص جديد (GradaG) تدريب الطالب بشكل أفضل عن طريق استبدال الرموز غير الحاسمة باستخدام نموذج لغة ملثم. نقوم بإجراء تجارب مكثفة وتحليلات موجودة على أربع مهام المصب في TOD، بما في ذلك تصنيف النوايا وتتبع ولاية الحوار وتنبؤ قانون الحوار واختيار الاستجابة. توضح النتائج التجريبية أن نهج التدريب الذاتي المقترح باستمرار يحسن باستمرار النماذج المدربة مسبقا من أحدث (بيرت، TOD-BERT-BERT) عند توفر عدد صغير فقط من البيانات المسمى.
يسمح التعلم المستمر في أنظمة الحوار الموجهة نحو المهام للنظام بإضافة مجالات ووظائف جديدة للعمل الإضافي بعد النشر، دون تكبد التكلفة العالية لإعادة النظر في النظام بأكمله في كل مرة. في هذه الورقة، نقترح أول معيار تعلم مستمر على الإطلاق لأنظمة الحوار ال موجهة نحو المهام مع أن يتم تعلم 37 نطما بشكل مستمر في إعدادات التعلم المعدلة والنهاية. بالإضافة إلى ذلك، نقوم بتنفيذ ومقارنة خطوط أساسيات التعلم المستمرة المتعددة، ونقترحنا طريقة معمارية بسيطة ولكنها فعالة تعتمد على المحولات المتبقية. نشير أيضا إلى أن الأداء العلوي للتعلم المستمر يجب أن يكون يعادل التعلم المتعدد المهام عند توفر البيانات من جميع المجال في وقت واحد. توضح تجاربنا أن الطريقة المعمارية المقترحة وإجراءات استراتيجية تستند إلى إعادة التشغيل بسيطة تؤدي بشكل أفضل، من خلال هامش كبير، مقارنة بتقنيات التعلم المستمرة الأخرى، وأسوأ قليلا قليلا من العلوي المتعدد التعلم العلوي أثناء كونه 20x بشكل أسرع في تعلم النطاقات الجديدة. نحن نبلغ أيضا العديد من المفاضلات من حيث استخدام المعلمة وحجم الذاكرة ووقت التدريب، وهي مهمة في تصميم نظام حوار موجه نحو المهام. يتم إصدار المعيار المقترح لتعزيز المزيد من البحث في هذا الاتجاه.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا