ترغب بنشر مسار تعليمي؟ اضغط هنا

التدريب الذاتي يحسن ما قبل التدريب لتعلم القليل من اللقطة في أنظمة الحوار الموجهة نحو المهام

Self-training Improves Pre-training for Few-shot Learning in Task-oriented Dialog Systems

371   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نظرا لأن تكلفة وضع العلامات للوحدات المختلفة في أنظمة الحوار الموجهة نحو المهام (TOD) باهظ الثمن، فإن التحدي الرئيسي هو تدريب وحدات مختلفة بأقل قدر من البيانات المسمى. أظهرت نماذج اللغة المدربة مسبقا مؤخرا، نتائج واعدة واعدة لعدد قليل من التعلم في TOD. في هذه الورقة، نرتند نهجا للتدريب الذاتي للاستفادة من بيانات الحوار غير المسبق الوفيرة لزيادة تحسين النماذج المدربة للدولة المدربة مسبقا في سيناريوهات تعليمية قليلة لأنظمة TOD. على وجه التحديد، نقترح نهجا للتدريب الذاتي أن تستلم البيانات الأكثر ثقة أكثر ثقة لتدريب نموذج طالب أقوى. علاوة على ذلك، يقترح تقنية تكبير نص جديد (GradaG) تدريب الطالب بشكل أفضل عن طريق استبدال الرموز غير الحاسمة باستخدام نموذج لغة ملثم. نقوم بإجراء تجارب مكثفة وتحليلات موجودة على أربع مهام المصب في TOD، بما في ذلك تصنيف النوايا وتتبع ولاية الحوار وتنبؤ قانون الحوار واختيار الاستجابة. توضح النتائج التجريبية أن نهج التدريب الذاتي المقترح باستمرار يحسن باستمرار النماذج المدربة مسبقا من أحدث (بيرت، TOD-BERT-BERT) عند توفر عدد صغير فقط من البيانات المسمى.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

عادة ما تتطلب النهج العصبية لتوليد اللغة الطبيعية في الحوار الموجه في المهام كميات كبيرة من بيانات التدريب المشروح لتحقيق أداء مرض، خاصة عند توليد المدخلات التركيبية. لمعالجة هذه المشكلة، نظهر أن التدريب الذاتي المعزز مع فك التشفير المقيد غلة مكاسب ك بيرة في كفاءة البيانات على مجموعة بيانات الطقس التي توظف تمثيلات المعنى المتراكم. على وجه الخصوص، تشير تجاربنا إلى أن التدريب الذاتي مع فك التشفير المقيد يمكن أن تمكن نماذج التسلسل إلى التسلسل لتحقيق جودة مرضية باستخدام بيانات أقل من خمسة إلى عشرة أضعاف بيانات أقل من خط الأساس الخاضع للإشراف العادي؛ علاوة على ذلك، من خلال الاستفادة من النماذج المحددة، يمكن زيادة كفاءة البيانات إلى خمسين مرة. نؤكد النتائج التلقائية الرئيسية مع التقييمات البشرية وإظهار أنها تمتد إلى نسخة محسنة وتركيبية من DataSet E2E. والنتيجة النهائية هي نهج يجعل من الممكن تحقيق أداء مقبول على مهام NLG التركيبية باستخدام المئات بدلا من عشرات الآلاف من عينات التدريب.
مزيد من النماذج اللغوية المسبقة للتدريب على البيانات داخل المجال (التدريب المسبق مسبقا، Dapt) أو البيانات ذات الصلة (TAME-APT-APTICTIVE، TAPT) قبل أن تؤدي إلى تحسين أداء المهام المصب.ومع ذلك، في نمذجة الحوار الموجهة نحو المهام، نلاحظ أن مزيد من الامت يازات التدريبية قبل التدريب لا تعزز دائما الأداء في مهمة المصب.نجد أن DIST مفيد في إعداد الموارد المنخفضة، ولكن نظرا لأن حجم بيانات ضبط الرصيف ينمو، يصبح DIST أقل فائدة أو حتى عديمة الفائدة، وتوسيع نطاق حجم بيانات Dapt لا يساعد.من خلال تحليل التشابه التمثيلي، نستنتج أن المزيد من البيانات الخاصة بالضبط بشكل جيد غلة تغيير أكبر في تمثيلات النموذج وبالتالي تقلل من تأثير التهيئة.
في هذا العمل، نركز على سيناريو عددا أقل تحديا للكشف عن قلة الرصاص حيث يكون العديد من النوايا المحبوسة بشكل جيد ومشبه بشكل صحيح.نقدم مخطط اكتشاف عديدي بسيطة ولكنه فعالة من القلة عبر التدريب المسبق والضبط الناعم الصنع.على وجه التحديد، نقوم أولا بإجراء تدريبات مسبقة من الناحية التي تم إشرافها ذاتيا على مجموعات بيانات النية التي تم جمعها، والتي تتعلم ضمنيا التمييز بين الكلام المماثلة الدلوية دون استخدام أي ملصقات.ثم نقوم بعد ذلك بإجراء اكتشاف عهد القليل من الرصاص مع التعلم البسيط المشروع، والذي يسحب صراحة النطق من نفس النية أقرب ويغطي الكلام عبر النوايا المختلفة أبعد.تظهر النتائج التجريبية أن أسلوبنا المقترح يحقق أداء حديثة على ثلاثة مجموعات بيانات للكشف عن النوايا الصعبة تحت 5 لقطة و 10 لقطة.
على الرغم من نجاحاتها الأخيرة في معالجة العديد من مهام NLP، لا تؤدي نماذج اللغة المدربة مسبقا على نطاق واسع وكذلك في إعدادات قليلة، حيث تتوفر حفنة من الأمثلة التدريبية فقط. لمعالجة هذا القصور، نقترح الطبقات، والتي تعني التدريب الذاتي مع تكبير المهمة، وهو نهج يبني على أفكارين رئيسيين للرافعة الفعالة من البيانات غير المسبقة. أولا، تستخدم Strata تكبير المهمة، وهي تقنية جديدة توليف كمية كبيرة من البيانات الخاصة بضبط المهمة المساعدة من النصوص المستهدفة من النصوص المستهدفة. ثانيا، تقوم الطبقات بإجراء تدريبات ذاتية من خلال زيادة ضبط النموذج القوي القوي الذي تم إنشاؤه بواسطة تكبير المهمة على توزيع واسع للبيانات المسمى الزائفة. توضح تجاربنا أن الطبقات يمكن أن تحسن بشكل كبير كفاءة عينة في 12 معيارا قليلة بالرصاص. بشكل ملحوظ، على DataSet SST-2 المعنويات، Strata، مع 8 أمثلة تدريبية فقط لكل فصل، تحقق نتائج قابلة للمقارنة للضبط بشكل جيد مع أمثلة تدريبية 67K. تكشف تحليلاتنا أن تكبير المهمة والتدريب الذاتي متكاملين وفعالا بشكل مستقل.
يعد عدم وجود بيانات تدريبية المسمى للميزات الجديدة مشكلة شائعة في أنظمة الحوار في العالم الحقيقي المتغيرة بسرعة.كحل، نقترح نموذج توليد إعادة صياغة متعددة اللغات يمكن استخدامه لإنشاء كلمات جديدة للميزة المستهدفة واللغة المستهدفة.يمكن استخدام الكلام ال ذي تم إنشاؤه لزيادة بيانات التدريب الحالية لتحسين تصنيف نماذج وضع العلامات الفضائية.نحن نقيم جودة الكلام التي تم إنشاؤها باستخدام مقاييس التقييم الجوهرية وإجراء تجارب التقييم المصب مع اللغة الإنجليزية كلغة مصدر وتسع لغات مستهدفة مختلفة.تعرض طريقنا وعد عبر اللغات، حتى في إعداد طلقة صفرية حيث لا توجد بيانات بذرة متاحة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا