يحدد اختيار استراتيجية مشاركة المعلمات في نماذج الترجمة الآلية متعددة اللغات مدى استخدام مساحة المعلمة الأمثلة، وبالتالي، تؤثر مباشرة على جودة الترجمة النهائية.وقد اقترح مؤخرا مختارة من الأشجار اللغوية التي تظهر درجة الرعاية بين اللغات المختلفة، كما تم اقتراح النهج العام الجديد لمشاركة المعلمة في الترجمة متعددة اللغات في الترجمة متعددة اللغات.تتمثل الفكرة الرئيسية في استخدام هذه التسلسلات الهرمية لغوية الخبراء كأساس للهندسة المعمارية متعددة اللغات: كلما زادت اللغتين، كلما زاد عدد المعلمات التي يشاركونها.في هذا العمل، نختبر هذه الفكرة باستخدام بنية المحولات وإظهار أنه على الرغم من النجاح في العمل السابق هناك مشاكل متأصلة لتدريب هذه النماذج الهرمية.نوضح أنه في حالة اتباع استراتيجية التدريب المختارة بعناية، يمكن للهندسة الهيكل الهرمية تفوق النماذج ثنائية اللغة ونماذج متعددة اللغات مع مشاركة المعلمات الكاملة.
The choice of parameter sharing strategy in multilingual machine translation models determines how optimally parameter space is used and hence, directly influences ultimate translation quality. Inspired by linguistic trees that show the degree of relatedness between different languages, the new general approach to parameter sharing in multilingual machine translation was suggested recently. The main idea is to use these expert language hierarchies as a basis for multilingual architecture: the closer two languages are, the more parameters they share. In this work, we test this idea using the Transformer architecture and show that despite the success in previous work there are problems inherent to training such hierarchical models. We demonstrate that in case of carefully chosen training strategy the hierarchical architecture can outperform bilingual models and multilingual models with full parameter sharing.
المراجع المستخدمة
https://aclanthology.org/
أثبتت الترجمة الآلية النموذجية على مستوى المستند (NMT) أنها ذات قيمة عميقة لفعاليتها في التقاط المعلومات السياقية. ومع ذلك، فإن الأساليب الحالية 1) تعرض ببساطة تمثيل أحكام السياق دون تمييز عملية التفكير بين الجملة؛ و 2) تغذية السياقات المستهدفة في ال
تطوير نموذج متعدد اللغات موحدة كان هدف متابعة طويلا للترجمة الآلية.ومع ذلك، فإن الأساليب الحالية تعاني من تدهور الأداء - نموذج واحد متعدد اللغات أدنى من المتدربين بشكل منفصل ثنائي اللغة على لغات الموارد الغنية.نحن نقوم بالتخمين أن مثل هذه الظاهرة من
اكتسبت النماذج الإدارية لأنظمة الحوار اهتماما كبيرا بسبب النجاح الأخير من RNN والنماذج القائمة على المحولات في مهام مثل الإجابة على الأسئلة والتلخيص. على الرغم من أن مهمة استجابة الحوار ينظر إليها عموما على أنها تسلسل للتسلسل (SEQ2SEQ) المشكلة، فقد و
في هذه الورقة، نقدم تفاصيل النظم التي قدمناها مقابل WAT 2021 Multiindicmt: مهمة متعددة اللغات.لقد قدمنا نماذج NMT متعددة اللغات منفصلة: واحد للغة الإنجليزية إلى 10 لغات ind وآخر ل 10 لغات ind للغة الإنجليزية.نناقش تفاصيل تنفيذ نهجين منفصلين متعدد الل
لقد تم الاعتراف على نطاق واسع بأن معلومات بناء الجملة يمكن أن تساعد في أنظمة الترجمة الآلية العصبية في نهاية إلى نهادة لتحقيق ترجمة أفضل. من أجل دمج معلومات التبعية في NMT المحول، النهج الحالية إما استغلال العلاقات المعتمدة في الرأس المحلية، تجاهل جي