يعد عدم وجود بيانات تدريبية المسمى للميزات الجديدة مشكلة شائعة في أنظمة الحوار في العالم الحقيقي المتغيرة بسرعة.كحل، نقترح نموذج توليد إعادة صياغة متعددة اللغات يمكن استخدامه لإنشاء كلمات جديدة للميزة المستهدفة واللغة المستهدفة.يمكن استخدام الكلام الذي تم إنشاؤه لزيادة بيانات التدريب الحالية لتحسين تصنيف نماذج وضع العلامات الفضائية.نحن نقيم جودة الكلام التي تم إنشاؤها باستخدام مقاييس التقييم الجوهرية وإجراء تجارب التقييم المصب مع اللغة الإنجليزية كلغة مصدر وتسع لغات مستهدفة مختلفة.تعرض طريقنا وعد عبر اللغات، حتى في إعداد طلقة صفرية حيث لا توجد بيانات بذرة متاحة.
The lack of labeled training data for new features is a common problem in rapidly changing real-world dialog systems. As a solution, we propose a multilingual paraphrase generation model that can be used to generate novel utterances for a target feature and target language. The generated utterances can be used to augment existing training data to improve intent classification and slot labeling models. We evaluate the quality of generated utterances using intrinsic evaluation metrics and by conducting downstream evaluation experiments with English as the source language and nine different target languages. Our method shows promise across languages, even in a zero-shot setting where no seed data is available.
المراجع المستخدمة
https://aclanthology.org/
نظرا لأن تكلفة وضع العلامات للوحدات المختلفة في أنظمة الحوار الموجهة نحو المهام (TOD) باهظ الثمن، فإن التحدي الرئيسي هو تدريب وحدات مختلفة بأقل قدر من البيانات المسمى. أظهرت نماذج اللغة المدربة مسبقا مؤخرا، نتائج واعدة واعدة لعدد قليل من التعلم في TO
اكتسبت النماذج الإدارية لأنظمة الحوار اهتماما كبيرا بسبب النجاح الأخير من RNN والنماذج القائمة على المحولات في مهام مثل الإجابة على الأسئلة والتلخيص. على الرغم من أن مهمة استجابة الحوار ينظر إليها عموما على أنها تسلسل للتسلسل (SEQ2SEQ) المشكلة، فقد و
يتطلب تحسين سياسة الحوار عبر التعلم التعزيز عددا كبيرا من التفاعلات التدريبية، مما يجعل التعلم مع المستخدمين الحقيقيين الوقت المستهلكة ومكلفة. لذلك يعتمد العديد من الإعدادات على محاكاة المستخدم بدلا من البشر. لدى محاكاة المستخدم هذه مشاكلهم الخاصة. ف
يسمح التعلم المستمر في أنظمة الحوار الموجهة نحو المهام للنظام بإضافة مجالات ووظائف جديدة للعمل الإضافي بعد النشر، دون تكبد التكلفة العالية لإعادة النظر في النظام بأكمله في كل مرة. في هذه الورقة، نقترح أول معيار تعلم مستمر على الإطلاق لأنظمة الحوار ال
تعلم أنظمة الحوار الموجهة نحو المهمة الحديثة نموذجا من الحوارات المشروح، وتحول هذه الحوارات بدورها يتم جمعها وتفاحها بحيث تكون متسقة مع معرفة مجال معينة. ومع ذلك، في السيناريوهات الحقيقية، تخضع معارف المجال للتغييرات المتكررة، وقد تصبح حوارات التدريب