ترغب بنشر مسار تعليمي؟ اضغط هنا

Flin: واجهة لغة طبيعية مرنة للملاحة على شبكة الإنترنت

FLIN: A Flexible Natural Language Interface for Web Navigation

368   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يمكن لمساعدات منظمة العفو الدولية الآن تنفيذ مهام للمستخدمين بالتفاعل بشكل مباشر مع موقع UIS بشكل مباشر.لا يمكن أن تتكيف تقنيات التحليل الدلالي الحالية والفتحية بمرونة مع العديد من مواقع الويب المختلفة دون إعادة تدريبها باستمرار.نقترح Flin، وهي واجهة لغة طبيعية للملاحة على شبكة الإنترنت التي تقوم بتقدم أوامر المستخدم إلى إجراءات المستوى المفاهيم (بدلا من إجراءات UI ذات المستوى المنخفض)، وبالتالي القدرة على التكيف بمرونة مع مواقع الويب المختلفة والتعامل مع طبيعتها العابرة.نحن نؤيد ذلك كمشكلة في الترتيب: مع إعطاء أمر مستخدم وشباج ويب، يتعلم Flin تسجيل تعليمات الملاحة الأكثر صلة (تنطوي على قيم العمل والمعلمات).لتدريب وتقييم Flin، نجمع مجموعة بيانات باستخدام تسعة مواقع مشهورة من ثلاثة مجالات.تظهر نتائجنا أن Flin تمكنت من التكيف مع مواقع الويب الجديدة في مجال معين.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

بالنظر إلى الطبيعة الأكثر انتشارا لواجهات اللغة الطبيعية، من المهم بشكل متزايد فهم من يصل إلى هذه الواجهات، وكيف يتم استخدام هذه الواجهات.في هذه الورقة، نستكشف التدقيق الإملائي في سياق البحث على شبكة الإنترنت مع الأطفال كجمهور مستهدف.على وجه الخصوص، عبر مراجعة الأدب، نظرا لأنه، بينما تستخدم أدوات البحث الشعبية على نطاق واسع للأطفال.ثم نستخدم إذكاء التدقيق الإملائي كدراسة للحالة لتسليط الضوء على الحاجة إلى نهج متعدد التخصصات يجمع معالجة اللغات الطبيعية والتعليم والتفاعل بين الإنسان للكهرباء لمعالجة مشكلة استرجاع المعلومات المعروفة: الاستعلام عن خطأ.نستنتج أنه من الضروري أن يكون لهؤلاء الذين تم تصميم الواجهات التي تم تصميم الواجهات صوتا في عملية التصميم.
في مهمة التنقل في الرؤية واللغة (VLN)، يقوم وكيل مجسد على بيئة ثلاثية الأبعاد، بعد تعليمات اللغة الطبيعية.التحدي في هذه المهمة هو كيفية التعامل مع سيناريوهات المسار حيث يوضح الوكيل من المسار المرجعي.يشرف العمل السابق على الوكيل بالإجراءات القائمة على أقصر مسار من موقع الوكيل إلى الهدف، ولكن هذا الإشراف الموجه نحو الأهداف غالبا ما لا يتماشى مع التعليمات.علاوة على ذلك، فإن مقاييس التقييم التي تستخدمها العمل المسبق لا تقيس مقدار التعليمات اللغوية التي يستطيع الوكيل أن يتبعها.في هذا العمل، نقترح مخطط إشراف بسيط وفعال من اللغات، ومقياس جديد يقيس عدد التعليمات الفرعية التي أكملها الوكيل أثناء الملاحة.
لا تزال العنصرية الدقيقة والعلانية موجودة في المجتمعات المادية والإنترنت اليوم وتأثرت في العديد من الأرواح في قطاعات مختلفة من المجتمع. في هذه القطعة القصيرة من العمل، نقدم كيف نتعامل مع هذه القضية المجتمعية مع معالجة اللغة الطبيعية. نحن نفرج BIASCOR P، مجموعة بيانات تحتوي على 139،090 تعليقات وقطاع أخبار من ثلاثة مصادر محددة - Fox News، Breitbartnews و YouTube. الدفعة الأولى (45000 المشروح يدويا) جاهز للنشر. نحن حاليا في المرحلة الأخيرة من وصف مجموعة البيانات المتبقية يدويا باستخدام Amazon Mechanical Turk. تم استخدام بيرت على نطاق واسع في العديد من المهام المصب. في هذا العمل، نقدم هيرت، حيث نقوم بتعديل طبقات معينة من نموذج برت المحدد مع طبقة Hopfield الجديدة. تعميم هيرت جيدا عبر توزيعات مختلفة مع ميزة إضافية من تعقيد نموذج مخفض. نحن نطلق أيضا مكتبة JavaScript 3 وطلب امتداد Chrome، لمساعدة المطورين على الاستفادة من نموذجنا المدربين في تطبيقات الويب (يقول تطبيق الدردشة) وللمستخدمين لتحديد وتقرير محتويات منحازة عنصري على الويب على التوالي
في فترة الوباء، فإن اتجاه الإقامة في المنزل أجبر الشركات على تبديل أنشطتها إلى الوضع الرقمي، على سبيل المثال، أساليب الدفع المستندة إلى التطبيقات، والانتعاش الاجتماعي عبر منصات وسائل التواصل الاجتماعي، والوسائل الرقمية الأخرى أصبحت جزءا لا يتجزأ من ح ياتناوبعدتحليل المعنويات للمعلومات النصية في تعليقات المستخدم هي مهمة موضحة في العاطفة AI لأن تعليقات المستخدم أو الاستعراضات ليست متجانسة، فهي تحتوي على سياق متفرق وراء ذلك، وتضلل كل من البشر والكمبيوتر.الحواجز تنشأ من اللغة العاطفية المخصبة باللغة العامية، الإملاء الغيبيري، الترجمة، واستخدام الرموز التعبيرية ونظيراتها الرمزية، وتبديل التعليمات البرمجية.بالنسبة لانخفاض تحليل المشاعر لغات الموارد لم يتم عملها على نطاق واسع، بسبب عدم وجود أدوات جاهزة والموارد اللغوية لتحليل المعنويات.يركز هذا البحث على تطوير طريقة لتحليل المعنويات المستندة إلى جانب الآراء مراجعات اللغة الكازاخستانية في سوق Google Play Android.
في هذه الورقة، نقدم دورة جديدة مفتوحة مفتوحة على الإنترنت على معالجة اللغة الطبيعية، وتستهدف الطلاب غير الإنجليزيين.تستمر الدورة 12 أسبوعا، كل أسبوع يتكون من محاضرات وجلسات عملية واعتيادات مسابقة.ثلاثة أسابيع من أصل 12 تليها الاعتمادات الترميز على غر ار Kaggle.حدة الدورة لدينا لخدمة أغراض متعددة: (ط) العائلة الطلاب مع المفاهيم الأساسية والأساليب في NLP، مثل نمذجة اللغة أو تمثيلات الكلمة أو الكلمة، (II) إظهار أن التطورات الحديثة، بما في ذلك النماذج القائمة على المحولات المدربة مسبقا، هيبناء على هذه المفاهيم؛(3) تقديم هياكنا للحصول على معظم التطبيقات الحقيقية الأكثر طلبا، (3) تطوير مهارات عملية لمعالجة النصوص بلغات متعددة.تم إعداد الدورة المسجلة وتسجيلها خلال عام 2020 وحتى الآن تلقت ردود فعل إيجابية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا