ترغب بنشر مسار تعليمي؟ اضغط هنا

الإشراف على الطريق المحاذي في اللغة (القانون) للملاحة للرؤية واللغة في البيئات المستمرة

Language-Aligned Waypoint (LAW) Supervision for Vision-and-Language Navigation in Continuous Environments

211   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في مهمة التنقل في الرؤية واللغة (VLN)، يقوم وكيل مجسد على بيئة ثلاثية الأبعاد، بعد تعليمات اللغة الطبيعية.التحدي في هذه المهمة هو كيفية التعامل مع سيناريوهات المسار حيث يوضح الوكيل من المسار المرجعي.يشرف العمل السابق على الوكيل بالإجراءات القائمة على أقصر مسار من موقع الوكيل إلى الهدف، ولكن هذا الإشراف الموجه نحو الأهداف غالبا ما لا يتماشى مع التعليمات.علاوة على ذلك، فإن مقاييس التقييم التي تستخدمها العمل المسبق لا تقيس مقدار التعليمات اللغوية التي يستطيع الوكيل أن يتبعها.في هذا العمل، نقترح مخطط إشراف بسيط وفعال من اللغات، ومقياس جديد يقيس عدد التعليمات الفرعية التي أكملها الوكيل أثناء الملاحة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

النمذجة اللغوية المعقدة (MLM) هي واحدة من المهام الفرعية الرئيسية في محاكاة لغة الرؤية. في الإعداد عبر الوسائط، يتم ملثمين الرموز في الجملة بشكل عشوائي، والنموذج يتوقع أن تكون الرموز الممكنة التي أعطتها الصورة والنص. في هذه الورقة، نلاحظ العديد من عي وب MLM الرئيسية في هذا الإعداد. أولا، حيث تميل التسميات التوضيحية إلى أن تكون قصيرة، في ثلث الجمل لا يتم أخذ عينات من الجمل. ثانيا، غالبية الرموز الملثمين هي التوقف عن الكلمات وعلامات الترقيم، مما يؤدي إلى نقص في الاستخدام للصورة. إننا نحقق في مجموعة من استراتيجيات التقنيع البديلة المحددة لإعداد العرض المتعلق الذي يتناول هذه أوجه القصور، تهدف إلى توصيف أفضل من النص والصورة في التمثيل المستفاد. عند تدريب ما قبل التدريب على نموذج LXMERT، تتحسن استراتيجياتنا البديلة الخاصة بنا باستمرار عبر استراتيجية التقنيع الأصلية على ثلاثة مهام أسفل المصب، خاصة في إعدادات الموارد المنخفضة. علاوة على ذلك، يتفوق نهجنا قبل التدريب بشكل كبير على نموذج الأساس في مهمة التحقيق الفورية المصممة لاستنباط كائنات الصورة. تشير هذه النتائج وتحليلنا إلى أن طريقتنا تسمح باستفادة أفضل من بيانات التدريب.
هناك حدود مثيرة في فهم اللغة الطبيعية (NLU) وتوليد (NLG) يدعو (NLG) نماذج لغة (Vision-and) التي يمكن أن تصل إلى إمكانية الوصول إلى مستودعات المعرفة المنظم الخارجية بكفاءة. ومع ذلك، فإن العديد من قواعد المعرفة الموجودة تغطي فقط المجالات المحدودة، أو ت عاني من بيانات صاخبة، والأهم من ذلك كلها يصعب دمجها عادة في خطوط أنابيب اللغة العصبية. لملء هذه الفجوة، ونحن نطلق عرض المرئيات: رسم بياني لمعرفة عالية الجودة (كجم) والتي تشمل العقد مع المواد المتعددة اللغات والصور التوضيحية المتعددة، والعلاقات ذات الصلة بصريا. ونحن نطلق أيضا نموذج استرجاع متعدد الوسائط العصبي يمكنه استخدام الصور أو الجمل كمدخلات واسترداد الكيانات في كجم. يمكن دمج نموذج استرجاع متعدد الوسائط هذا في أي خط أنابيب نموذج (الشبكة العصبية). نحن نشجع مجتمع البحث على استخدام المرئيات لتعزيز البيانات و / أو كمصدر للتأريض، من بين الاستخدامات الأخرى الممكنة. تتميز المرئيات وكذلك نماذج استرجاع متعددة الوسائط متاحة للجمهور ويمكن تنزيلها في عنوان URL هذا: https://github.com/acercalixto/visualsem.
يمكن لمساعدات منظمة العفو الدولية الآن تنفيذ مهام للمستخدمين بالتفاعل بشكل مباشر مع موقع UIS بشكل مباشر.لا يمكن أن تتكيف تقنيات التحليل الدلالي الحالية والفتحية بمرونة مع العديد من مواقع الويب المختلفة دون إعادة تدريبها باستمرار.نقترح Flin، وهي واجهة لغة طبيعية للملاحة على شبكة الإنترنت التي تقوم بتقدم أوامر المستخدم إلى إجراءات المستوى المفاهيم (بدلا من إجراءات UI ذات المستوى المنخفض)، وبالتالي القدرة على التكيف بمرونة مع مواقع الويب المختلفة والتعامل مع طبيعتها العابرة.نحن نؤيد ذلك كمشكلة في الترتيب: مع إعطاء أمر مستخدم وشباج ويب، يتعلم Flin تسجيل تعليمات الملاحة الأكثر صلة (تنطوي على قيم العمل والمعلمات).لتدريب وتقييم Flin، نجمع مجموعة بيانات باستخدام تسعة مواقع مشهورة من ثلاثة مجالات.تظهر نتائجنا أن Flin تمكنت من التكيف مع مواقع الويب الجديدة في مجال معين.
تهدف العبارة الأساسية إلى تعيين العبارات النصية إلى مناطق الصور المرتبطة بها، والتي يمكن أن تكون شرطا أساسيا لسبب متعدد الوسائط ويمكن أن تستفيد المهام التي تتطلب تحديد الكائنات القائمة على اللغة. مع تحقيق نماذج للرؤية واللغة المدربة مسبقا أداء مثير ل لإعجاب عبر المهام، لا يزال غير واضح إذا كان بإمكاننا الاستفادة مباشرة من تضمينهم المستفادين لعبارة التأريض دون ضبط جيد. تحقيقا لهذه الغاية، نقترح طريقة لاستخراج أزواج من منطقة العبارات المتطابقة من تضمين الرؤية واللغة المدربة مسبقا واقتراح أربع أهداف صعبة لتحسين عبارة التأريض النموذجية باستخدام بيانات التسمية التوضيحية للصور دون أي إشارات تأريض خاضعة للإشراف. توضح التجارب في مجموعات بيانات تمثيليتين فعالية أهدافنا، مما يتفوق على نماذج أساسية في كل من إعدادات التأريض الإشراف والإشراف عليها. بالإضافة إلى ذلك، نقوم بتقييم embedings المحاذاة على العديد من المهام الأخرى المصب وإظهار أنه يمكننا تحقيق عبارات أفضل دون التضحية بعموة التمثيل.
نهج فهم اللغة الحديثة في الرؤية اعتماد محول متعدد الوسائط قبل التدريب المسبق و Finetuning النموذج.يتعلم العمل المسبق تمثيلات الرموز النصية والسمات المرئية مع آليات الانهيارات المتقاطعة ويلتقط المحاذاة على أساس إشارات غير مباشرة.في هذا العمل، نقترح تع زيز آلية المحاذاة من خلال دمج هياكل الرسم البياني المشهد للصورة كجسر بين الطرطرين، والتعلم بأهداف جديدة للتناقض.في دراستنا الأولية حول الاسئلة المرئية التركيبية الصعبة الإجابة على المهمة، نظهر النهج المقترح يحقق نتائج محسنة، مما يدل على الإمكانات لتعزيز فهم لغة الرؤية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا