نقترح نموذج تسلسل متعدد التسلسل للمحولات للتعرف على الكلام التلقائي (ASR) قادر على نسخ الصوت التلقائي (ASR) من نسخ الصوت في وقت واحد والشروحة مع المعلومات اللغوية مثل النصوص الصوتية أو علامات جزء من الكلام (POS). نظرا لأن المعلومات اللغوية مهمة في معالجة اللغة الطبيعية (NLP)، فإن ASR المقترح مفيد بشكل خاص لتطبيقات واجهة الكلام، بما في ذلك أنظمة الحوار المنطوقة والترجمة الكلامية، والتي تجمع بين ASR و NLP. لإنتاج التعليقات التوضيحية اللغوية، ندرب نظام ASR باستخدام أهداف تدريبية معدلة: يتبع كل وحدة جرفية أو متعددة الجرافيم في النص المستهدف تسلسل صوت محاذاة و / أو علامة نقاط البيع. نظرا لأن طريقتنا قد تمكن من الوصول إلى البيانات الصوتية الأساسية، فيمكننا تقدير التعليقات التوضيحية اللغوية بشكل أكثر دقة من نهج خطوط الأنابيب التي يتم فيها تطبيق الأساليب القائم على NLP على نص ASR الفرضية. تظهر النتائج التجريبية على مجموعات البيانات اليابانية والإنجليزية أن نظام ASR المقترح قادر على إنتاج نسخ عالية الجودة في وقت واحد والشروح اللغوية.
We propose a Transformer-based sequence-to-sequence model for automatic speech recognition (ASR) capable of simultaneously transcribing and annotating audio with linguistic information such as phonemic transcripts or part-of-speech (POS) tags. Since linguistic information is important in natural language processing (NLP), the proposed ASR is especially useful for speech interface applications, including spoken dialogue systems and speech translation, which combine ASR and NLP. To produce linguistic annotations, we train the ASR system using modified training targets: each grapheme or multi-grapheme unit in the target transcript is followed by an aligned phoneme sequence and/or POS tag. Since our method has access to the underlying audio data, we can estimate linguistic annotations more accurately than pipeline approaches in which NLP-based methods are applied to a hypothesized ASR transcript. Experimental results on Japanese and English datasets show that the proposed ASR system is capable of simultaneously producing high-quality transcriptions and linguistic annotations.
المراجع المستخدمة
https://aclanthology.org/
نحن تصف محلول Nuig لمهمة IWPT 2021 بمهمة التعبير المعزز (ED) معزز بلغات متعددة.بالنسبة لهذه المهمة المشتركة، نقترح وتقييم محلل إد المحلي المستند SEQ2SEQ SEQ2SEQ ومقرها SEQ2SEQ الذي يتنبأ بمجموعة ED-Parse من جملة مدخلات معينة كأسلسلة موضعية موضعية للن
تفترض أن معظم الدراسات السابقة حول حالة المعلومات (IS) تصنيف وتجسير التعرف anaphora أن ذكر الذهب أو معلومات شجرة النحوية يتم إعطاء (Hou et al.، 2013؛ Roesiger et al.، 2018؛ هو، 2020؛ يو ويوسيو، 2020) وبعد في هذه الورقة، نقترح نهج عصبي نهاية إلى نهج ل
تصف هذه الورقة طريقة لاسترداد الأدلة والتنبؤ بعثور على مزاعم واقعية، على مجموعة البيانات المحمولة.تتكون الأدلة من كل من الجمل وخلايا الطاولة.الطريقة المقترحة هي جزء من المهمة المشتركة للحمى.يستخدم درجات التشابه بين متجهات TF-IDF لاسترداد الأدلة النصي
يدقق هذا البرنامج التعليمي أحدث التقدم التقني في التحليل النحوي ودور بناء الجملة في مهام معالجة اللغة الطبيعية المناسبة (NLP)، حيث يتمثل الترجمة الدلالية في الدورات الدلالية (SRL) والترجمة الآلية (MT) المهام التي لديهاكان دائما مفيدا من أدلة النحوية
تتمثل منطقة البحث الشعبية حاليا في الترجمة الانتهاء من الكلام في النهاية باستخدام تقنورة المعرفة من مهمة ترجمة آلية (MT) لتحسين مهمة ترجمة الكلام (ST).ومع ذلك، من الواضح أن مثل هذا السيناريو يسمح فقط بنقل طريقة واحدة، وهو محدود من أداء نموذج المعلم.ل