بدأت أنظمة التلخيص المبخر مسبقا مدربة مسبقا في تحقيق أداء موثوق، ولكن عائق رئيسي أمام استخدامها في الممارسة العملية هو ميلهم لإخراج الملخصات التي لا تؤيد المدخلات وتحتوي على أخطاء واقعية. في حين تم استكشاف عدد من مجموعات البيانات المشروحة والنماذج الإحصائية لتقييم التوظيف، إلا أنه لم يتم استكشاف صورة واضحة للأخطاء الأكثر أهمية لاستهداف أو عندما تنجح التقنيات الحالية والفشل. نستكشف كل من مصادر البيانات الاصطناعية والإنسانية ذات العلامات بين النماذج التدريبية لتحديد الأخطاء الواقعية في تلخيص، ودراسة الواقعية على مستوى الكلمة والاعتماد على مستوى الجملة. ملاحظاتنا هي ثلاثة أضعاف. أولا، تختلف الأخطاء الواقعية المعروضة بشكل كبير عبر مجموعات البيانات، والمجموعات التدريبية التي تستخدمها عادة من الأخطاء الاصطناعية البسيطة لا تعكس الأخطاء التي تم إجراؤها على مجموعات بيانات الجماعة مثل XSUM. ثانيا، توفر البيانات ذات العلامات البشرية ذات العلامات النووية ذات التوضيحية الدقيقة إشارة تدريب أكثر فعالية من التعليقات التوضيحية على مستوى الجملة أو البيانات الاصطناعية. أخيرا، نظير على أن أفضل نموذج الكشف عن الواقعين لدينا يتيح تدريب المزيد من نماذج تلخيص XSUM أكثر واقعية من خلال السماح لنا بتحديد الرموز المميزة غير الواقعية في بيانات التدريب.
Recent pre-trained abstractive summarization systems have started to achieve credible performance, but a major barrier to their use in practice is their propensity to output summaries that are not faithful to the input and that contain factual errors. While a number of annotated datasets and statistical models for assessing factuality have been explored, there is no clear picture of what errors are most important to target or where current techniques are succeeding and failing. We explore both synthetic and human-labeled data sources for training models to identify factual errors in summarization, and study factuality at the word-, dependency-, and sentence-level. Our observations are threefold. First, exhibited factual errors differ significantly across datasets, and commonly-used training sets of simple synthetic errors do not reflect errors made on abstractive datasets like XSum. Second, human-labeled data with fine-grained annotations provides a more effective training signal than sentence-level annotations or synthetic data. Finally, we show that our best factuality detection model enables training of more factual XSum summarization models by allowing us to identify non-factual tokens in the training data.
المراجع المستخدمة
https://aclanthology.org/
نماذج التلخيص الحديثة تولد بطلاقة للغاية ولكن في كثير من الأحيان مخرجات غير موثوق بها في كثير من الأحيان.هذه الدافع الطفرة من المقاييس التي تحاول قياس واقعية الملخصات التي تم إنشاؤها تلقائيا.نظرا لعدم وجود معايير مشتركة، لا يمكن مقارنة هذه المقاييس.ع
في السنوات الأخيرة، تم تطوير العديد من Corpora للحصول على مهام الرؤية واللغة.مع هذه الورقة، نعتزم بدء مناقشة حول شرح الظواهر المرجانية في حوار الموقع.نقول أنه لا يزال هناك غرفة هامة للشريعة التي تزيد من تعقيد كل من المجالات البصرية واللغوية والتي تلت
نحن ندرس توليد ملخصات مبادرة مخلصة ومتسقة فعليا مع المقالات المعينة. يتم تقديم صياغة تعليمية متناقضة جديدة، والتي ترفف كل من الملخصات المرجعية، كبيانات تدريب إيجابية، وإنشائها تلقائيا ملخصات خاطئة، كبيانات تدريب سلبية، لتدريب أنظمة التلخيص التي تكون
تتضارنات واقعية موجودة في إخراج نماذج تلخيص مبادرة مع المستندات الأصلية تم تقديمها بشكل متكرر. يتطلب تقييم تناسق الحقائق إمكانية التفكير في العثور على أدلة خفية لتحديد ما إذا كان ملخص النموذج الذي تم إنشاؤه يتوافق مع المستند الأصلي. تقترح هذه الورقة
لفتت تلخيص الحوار اهتماما كبيرا مؤخرا. خاصة في مجال خدمة العملاء، يمكن للوكلاء استخدام ملخصات الحوار للمساعدة في زيادة أعمالهم من خلال معرفة قضايا العملاء بسرعة وتقدم الخدمة. تتطلب هذه التطبيقات ملخصات لاحتواء منظور مكبر صوت واحد ولديك هيكل تدفق موضو