تتضارنات واقعية موجودة في إخراج نماذج تلخيص مبادرة مع المستندات الأصلية تم تقديمها بشكل متكرر. يتطلب تقييم تناسق الحقائق إمكانية التفكير في العثور على أدلة خفية لتحديد ما إذا كان ملخص النموذج الذي تم إنشاؤه يتوافق مع المستند الأصلي. تقترح هذه الورقة إطار تقييم حقائق من الفصحتين على مرحلتين على مرحلتين نماذج تلخيص (Sumfc). بالنظر إلى وثيقة الجملة الموجزة، في المرحلة الأولى، حدد Sumfc الجمل الأكثر صلة بالجمل الأكثر صلة مع الجملة الموجزة من المستند. في المرحلة الثانية، ينفذ النموذج منطق اتساق محمظ بشكل جيد على مستوى الجملة، ثم يعزى جميع درجات الاتساق لجميع الجمل للحصول على نتيجة التقييم النهائي. نحصل على أزواج البيانات التدريبية عن طريق تخليق البيانات واعتماد فقدان مقاوم للتناقض لأزواج البيانات لمساعدة النموذج على تحديد العظة خفية. تظهر نتائج التجربة أن Sumfc قد أحدث تحسنا كبيرا على الأساليب السابقة للدولة السابقة. تشير تجاربنا أيضا إلى أن Sumfc يميز الاختلافات المفصلة بشكل أفضل.
Factual inconsistencies existed in the output of abstractive summarization models with original documents are frequently presented. Fact consistency assessment requires the reasoning capability to find subtle clues to identify whether a model-generated summary is consistent with the original document. This paper proposes a fine-grained two-stage Fact Consistency assessment framework for Summarization models (SumFC). Given a document and a summary sentence, in the first stage, SumFC selects the top-K most relevant sentences with the summary sentence from the document. In the second stage, the model performs fine-grained consistency reasoning at the sentence level, and then aggregates all sentences' consistency scores to obtain the final assessment result. We get the training data pairs by data synthesis and adopt contrastive loss of data pairs to help the model identify subtle cues. Experiment results show that SumFC has made a significant improvement over the previous state-of-the-art methods. Our experiments also indicate that SumFC distinguishes detailed differences better.
المراجع المستخدمة
https://aclanthology.org/
اكتسبت أنظمة تلخيص الجماع العصبي تقدما كبيرا في السنوات الأخيرة.ومع ذلك، غالبا ما تنتج تلخيص التلوث في كثير من الأحيان بيانات غير متناسقة أو حقائق كاذبة.كيفية توليد الملخصات التجريدية بشكل كبير تلقائيافي هذه الورقة، اقترحنا نهجا فعالا معزز بيانات تكب
تم العثور على ملخصات إطفاء التلقائي في كثير من الأحيان تشويه الحقائق أو اختصاصها في المقال.هذا التناقض بين الملخص والنص الأصلي قد أثر بشكل خطير على قابليته للتطبيق.نقترح نموذج تلخيص الحقائق FASUM لاستخراج ودمج العلاقات الواقعية في عملية توليد الموجز
المعرفة الواقعية المكتسبة أثناء التدريب المسبق وتخزينها في معلمات نماذج اللغة (LMS) يمكن أن تكون مفيدة في مهام المصب (على سبيل المثال، الإجابة على السؤال أو الاستدلال النصي). ومع ذلك، يمكن أن تسبب بعض الحقائق أو تصبح عفا عليها الزمن مع مرور الوقت. نق
تصف الورقة نظام تلخيص تلقائي باللغة الإنجليزية لبيانات الأخبار عبر الإنترنت التي تأتي من لغات مختلفة غير الإنجليزية.تم تصميم النظام لاستخدامه في بيئة الإنتاج لمراقبة الوسائط.يمكن أن تكون التلخيص التلقائي مفيدة للغاية في هذا المجال عند تطبيقها كأداة م
في حين أن التلخيص المبشط في بعض اللغات، مثل اللغة الإنجليزية، فقد وصلت بالفعل نتائج جيدة إلى حد ما بسبب توفر موارد تحديد الاتجاه، مثل مجموعة بيانات CNN / Daily Mail، والتقدم الكبير في النماذج العصبية الإنتاجية، والتقدم المحرز في تلخيص الجماع للعربية