يعد تعلم محاذاة جدول النص أمرا ضروريا للمهام مثل النص إلى SQL. يحتاج النموذج إلى التعرف بشكل صحيح على مراجع اللغة الطبيعية إلى الأعمدة والقيم وإيصارها في مخطط قاعدة البيانات المحدد. في هذه الورقة، نقدم رواية خاضعة للإشراف على أساس إشراف الإشراف على إنشاء هيكل (Stred) للنص إلى SQL والتي يمكن أن تتعلم بفعالية لالتقاط محاذاة جدول النصوص بناء على كوربوس نصي متوازي للنص. نحدد مجموعة من المهام التي تحذر الرواية: تأريض العمود، والتأريض القيمة ورسم الخرائط ذات القيمة العمودية، والاستفادة منهم للتأمر بتشمس الجدول النصي. بالإضافة إلى ذلك، لتقييم الأساليب المختلفة في إطار إعدادات محاذاة النصوص النصية أكثر واقعية، نقوم بإنشاء تقييم جديد تم تعيين العنكبوت على أساس مجموعة ديف العنكبوت مع إزالته الصريحة لأسماء الأعمدة التي تمت إزالتها، واعتماد ثمانية مجموعات بيانات نصية إلى SQL الحالية تقييم قاعدة البيانات. Werug يجلب تحسنا كبيرا على Bertlarge في جميع الإعدادات. بالمقارنة مع طرق الاحتجاج الحالية مثل Grappa، تحقق Strech أداء مماثل على العنكبوت، وتتفوق على جميع خطوط الأساس على مجموعات أكثر واقعية. سيكون جميع التعليمات البرمجية والبيانات المستخدمة في هذا العمل مفتوحة لتسهيل البحث في المستقبل.
Learning to capture text-table alignment is essential for tasks like text-to-SQL. A model needs to correctly recognize natural language references to columns and values and to ground them in the given database schema. In this paper, we present a novel weakly supervised Structure-Grounded pretraining framework (STRUG) for text-to-SQL that can effectively learn to capture text-table alignment based on a parallel text-table corpus. We identify a set of novel pretraining tasks: column grounding, value grounding and column-value mapping, and leverage them to pretrain a text-table encoder. Additionally, to evaluate different methods under more realistic text-table alignment settings, we create a new evaluation set Spider-Realistic based on Spider dev set with explicit mentions of column names removed, and adopt eight existing text-to-SQL datasets for cross-database evaluation. STRUG brings significant improvement over BERTLARGE in all settings. Compared with existing pretraining methods such as GRAPPA, STRUG achieves similar performance on Spider, and outperforms all baselines on more realistic sets. All the code and data used in this work will be open-sourced to facilitate future research.
المراجع المستخدمة
https://aclanthology.org/
البيانات القوية وبأسعار معقولة في المجال هي أصل مرغوب فيه عند نقل المحللين الدلاليين المدربين إلى مجالات جديدة.نظرا لأن الأساليب السابقة لإنشاء مثل هذه البيانات نصف تلقائيا لا يمكن أن تتعامل مع تعقيد استفسارات SQL الواقعية، نقترح بناء استفسارات SQL ع
يمكن أن ترجمت نماذج النص العصبي المؤقتة مؤخرا لترجمة أسئلة اللغة الطبيعية بفعالية لاستعلامات SQL المقابلة على قواعد البيانات غير المرئية.العمل في الغالب على مجموعة بيانات العنكبوت، اقترح الباحثون حلولا متطورة بشكل متزايد للمشكلة.على عكس هذا الاتجاه،
يعد معالجة عدم التطابق بين الأوصاف اللغوية الطبيعية واستعلامات SQL المقابلة تحديا رئيسيا للترجمة النصية إلى SQL. لسد هذه الفجوة، نقترح تمثيل SQL الوسيط (IR) يسمى SQL الطبيعية (Natsql). على وجه التحديد، يحافظ NATSQL على الوظائف الأساسية ل SQL، في حين
تم جمع معظم مجموعات بيانات تحليل الدلالات المتاحة، والتي تتكون من أزواج من الكلام الطبيعي والنماذج المنطقية، فقط لغرض تدريب وتقييم أنظمة فهم اللغة الطبيعية.ونتيجة لذلك، فإنها لا تحتوي على أي من ثراء ومجموعة متنوعة من الكلام الطبيعية التي تحدث، حيث يس
تصف هذه الورقة نظام NAIST لمهمة الترجمة المركزة للترجمة الفورية إلى الإنجليزية إلى اليابانية في حملة تقييم IWSLT 2021.يعتمد تقديمنا الأساسي على الترجمة الآلية العصبية WAIL-K مع تقطير المعرفة على مستوى التسلسل لتشجيع الترجمة الحرفية.