على الرغم من أن الإجابة على الأسئلة العامة قد تم استكشافها جيدا في السنوات الأخيرة، فإن الإجابة السؤال الزمنية هي مهمة لم تتلق أكبر قدر ممكن من التركيز.يهدف عملنا إلى الاستفادة من نهج شعبي المستخدم للاستفادة العامة الإجابة، والإجابة على استخراج، من أجل العثور على إجابات للمسائل الزمنية في الفقرة.لتدريب نموذجنا، نقترح مجموعة بيانات جديدة، مستوحاة من الفريق، وهي سؤال من أحدث سؤال حول كوربوس، خصيصا خصيصا لتوفير معلومات زمنية غنية من خلال تكييف WikiWars، والتي تحتوي على العديد من الوثائق حول أعظم صراعات التاريخ.يوضح تقييمنا أن نموذج مطابق لنموذج التعلم العميق، وغالبا ما يستخدم في الإجابة على السؤال العام، يمكن تكييفه مع السؤال الزمني الرد، إذا قبلنا طرح الأسئلة التي يجب أن تكون إجاباتها موجودة مباشرة في النص.
Although general question answering has been well explored in recent years, temporal question answering is a task which has not received as much focus. Our work aims to leverage a popular approach used for general question answering, answer extraction, in order to find answers to temporal questions within a paragraph. To train our model, we propose a new dataset, inspired by SQuAD, a state-of-the-art question answering corpus, specifically tailored to provide rich temporal information by adapting the corpus WikiWars, which contains several documents on history's greatest conflicts. Our evaluation shows that a pattern matching deep learning model, often used in general question answering, can be adapted to temporal question answering, if we accept to ask questions whose answers must be directly present within a text.
المراجع المستخدمة
https://aclanthology.org/
اكتسبت النماذج متعددة اللغات، مثل M-Bert و XLM-R، شعبية متزايدة، بسبب قدرات التعلم الصفرية عبر اللغات. ومع ذلك، فإن قدرة تعميمها لا تزال غير متسقة للغات المتنوعة من النطبية وعبر معايير مختلفة. في الآونة الأخيرة، حصل التعلم التعريفي على الاهتمام باعتب
حقق استنتاج اللغة الطبيعي (NLI) اهتماما كبيرا في السنوات الأخيرة؛ومع ذلك، ظل وعد تطبيق اختراقات NLI لمهام NLP الأخرى المنفذة غير الموحدة.في هذا العمل، نستخدم الفهم القروض متعدد الخيارات (MCRC) وفحص صحة واقعية لمهام التلخيص النصي (CFCS) للتحقيق في الأ
يمكن إلقاء العديد من الأسئلة المفتوحة على المشكلات بمثابة مهمة استقامة نصية، حيث يتم تسليم الإجابات السؤال والمرشح لتشكيل الفرضيات. ثم يحدد نظام ضمان الجودة إذا كان قواعد المعرفة الداعمة، التي تعتبر مباني محتملة، تنطوي على الفرضيات. في هذه الورقة، نح
يقارن تقييم نماذج الرد على الأسئلة التوضيحية حول التوقعات النموذجية. ومع ذلك، اعتبارا من اليوم، فإن هذه المقارنة تعتمد في الغالب معجمية، وبالتالي تفتقد الإجابات التي لا تحتوي على تداخل جذري ولكن لا تزال مماثلة متشابهة دلالة، وبالتالي علاج الإجابات ال
بالنظر إلى الطبيعة الأكثر انتشارا لواجهات اللغة الطبيعية، من المهم بشكل متزايد فهم من يصل إلى هذه الواجهات، وكيف يتم استخدام هذه الواجهات.في هذه الورقة، نستكشف التدقيق الإملائي في سياق البحث على شبكة الإنترنت مع الأطفال كجمهور مستهدف.على وجه الخصوص،