اكتسبت النماذج متعددة اللغات، مثل M-Bert و XLM-R، شعبية متزايدة، بسبب قدرات التعلم الصفرية عبر اللغات. ومع ذلك، فإن قدرة تعميمها لا تزال غير متسقة للغات المتنوعة من النطبية وعبر معايير مختلفة. في الآونة الأخيرة، حصل التعلم التعريفي على الاهتمام باعتباره تقنية واعدة لتعزيز تعلم النقل بموجب سيناريوهات الموارد المنخفضة: خاصة للتحويل عبر اللغات في فهم اللغة الطبيعية (NLU). في هذا العمل، نقترح X-Metra-ADA، ونهج تكيف التعلم التعبيري عبر Ling-Lingual من أجل NLU. نهجنا تتكيف مع MAML، نهج التعلم التلوي المستند إلى التحسين، لتعلم التكيف مع لغات جديدة. نقوم بتقييم إطار عملنا على نطاق واسع على اثنين من مهام NLU الصينية الصعبة: مربع حوار موجه نحو المهلة متعددة اللغات والإجابة على الأسئلة المتنوعة من الناحية النموذجية. نظرا لأن نهجنا يتفوق على ضجة ساذجة دقيقة، حيث وصل إلى أداء تنافسي على كلا المهام لمعظم اللغات. يكشف تحليلنا أن X-Metra-ADA يمكنه الاستفادة من البيانات المحدودة للتكيف بشكل أسرع.
Multilingual models, such as M-BERT and XLM-R, have gained increasing popularity, due to their zero-shot cross-lingual transfer learning capabilities. However, their generalization ability is still inconsistent for typologically diverse languages and across different benchmarks. Recently, meta-learning has garnered attention as a promising technique for enhancing transfer learning under low-resource scenarios: particularly for cross-lingual transfer in Natural Language Understanding (NLU). In this work, we propose X-METRA-ADA, a cross-lingual MEta-TRAnsfer learning ADAptation approach for NLU. Our approach adapts MAML, an optimization-based meta-learning approach, to learn to adapt to new languages. We extensively evaluate our framework on two challenging cross-lingual NLU tasks: multilingual task-oriented dialog and typologically diverse question answering. We show that our approach outperforms naive fine-tuning, reaching competitive performance on both tasks for most languages. Our analysis reveals that X-METRA-ADA can leverage limited data for faster adaptation.
المراجع المستخدمة
https://aclanthology.org/
على الرغم من أن الإجابة على الأسئلة العامة قد تم استكشافها جيدا في السنوات الأخيرة، فإن الإجابة السؤال الزمنية هي مهمة لم تتلق أكبر قدر ممكن من التركيز.يهدف عملنا إلى الاستفادة من نهج شعبي المستخدم للاستفادة العامة الإجابة، والإجابة على استخراج، من أ
تقدم هذه الورقة خط أنابيب التعلم شبه الإشرافه (SSL) على أساس إطار المعلم الطالب، الذي يزداد ملايين الأمثلة غير المستمرة لتحسين مهام فهم اللغة الطبيعية (NLU). نحن نبحث في سؤالين يتعلق باستخدام البيانات غير المسبقة في سياق الإنتاج SSL: 1) كيفية تحديد ع
يعرض عدم وجود بيانات تدريبية تحديا كبيرا لتحجيم فهم اللغة المنطوقة لغات الموارد المنخفضة.على الرغم من أن نهج تكبير البيانات المختلفة قد اقترحت توليف البيانات التدريبية في لغات مستهدفة منخفضة الموارد، فإن مجموعات البيانات المعززة غالبا ما تكون صاخبة،
حققت نماذج التضمين السياقية المدربة مسبقا متعددة اللغات (Devlin et al.، 2019) أداء مثير للإعجاب على مهام نقل اللغات الصفرية.من خلال إيجاد استراتيجية ضبط الدقيقة الأكثر فعالية لضبط هذه النماذج على لغات الموارد عالية الموارد بحيث تقوم بتحويلاتها جيدا ل
تفترض السؤال المتعدد اللغات الرد على المهام عادة أن الإجابات موجودة بنفس اللغة مثل السؤال. ومع ذلك، في الممارسة العملية، تواجه العديد من اللغات كل من ندرة المعلومات --- حيث تحتوي اللغات على عدد قليل من المقالات المرجعية --- واستاجةم المعلومات --- أين