ترغب بنشر مسار تعليمي؟ اضغط هنا

تعلم كيفية تعلم NLP: تطوير مفاهيم تمهيدية من خلال اكتشاف السقالات

Learning How To Learn NLP: Developing Introductory Concepts Through Scaffolded Discovery

246   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نقدم نهجا للتعلم اكتشاف سقالة لإدخال مفاهيم في دورة معالجة اللغة الطبيعية تهدف إلى طلاب علوم الكمبيوتر في مؤسسات الفنون الليبرالية.نحن نصف بعض أهداف هذا النهج، بالإضافة إلى تقديم طرق محددة أن أربعة من المهام التي تعتمد على اكتشافها تجمع بين مفاهيم معالجة اللغة الطبيعية المحددة مع مهارات تحليلية أوسع.نقول أن هذا النهج يساعد في إعداد الطلاب للحصول على العديد من المسارات المستقبلية الممكنة التي تنطوي على تطبيق وابتكار تكنولوجيا NLP من خلال التركيز على الملاحة التجريبية للبيانات، وتصميم التجريب، والوعي في تعقيدات وتحديات التحليل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تم استخدام مطالبات اللغة الطبيعية مؤخرا لتخصيص نماذج اللغة في أداء مهام منظمة العفو الدولية الأخرى، باستخدام نموذج تعبئة داخل الفراغ (Petroni et al.، 2019) أو نموذج استقراء قليل بالرصاص (براون وآخرون، 2020). على سبيل المثال، تحتفظ نماذج اللغة بالمعرف ة الواقعية من كورسا التدريب التي يمكن استخراجها من خلال مطالبتها بملء الفراغ "في موجه أساسية. ومع ذلك، أين يأتي هذا المطالبة؟ نستكشف فكرة مطالبات التعلم عن طريق نزول التدرج --- إما مطالبات ضبط دقيقة مأخوذة من العمل السابق، أو بدءا من تهيئة عشوائية. تتكون مطالباتنا من كلمات ناعمة، '' I.E.، ناقلات مستمرة ليست بالضرورة تضمين نوع الكلمات من نموذج اللغة. علاوة على ذلك، لكل مهمة، فإننا نحسن مزيجا من المطالبات، والتعلم الذي يطالب الأكثر فعالية وكيفية الفرقة لهم. عبر العديد من LMS والمهام الإنجليزية المتعددة، يتفوق نهجنا بشكل كبير على الأساليب السابقة، مما يظهر أن المعرفة الواقعية الضمنية في نماذج اللغة قد تم التقليل من السابق. علاوة على ذلك، فإن هذه المعرفة رخيصة للاستيلاء: تهيئة عشوائية جيدة مثل التهيئة المستنيرة.
يعد تحسين تعميم النموذج حول البيانات المحتفظ بها أحد الأهداف الأساسية في التفكير المعني بالمعنى. لقد أظهر العمل الحديث أن النماذج المدربة على مجموعة البيانات مع الإشارات السطحية تميل إلى أداء جيد في الاختبار السهل مع الإشارات السطحية ولكنها تؤدي بشكل سيء على مجموعة الاختبار الثابت دون إشارات سطحية. لجأت النهج السابقة إلى الأساليب اليدوية لتشجيع النماذج غير المبالفة للعظة السطحية. في حين أن بعض الأساليب قد تحسن الأداء على الحالات الصعبة، فإنها تؤدي أيضا إلى أدائها المتدهورة بشأن التعرضات السهلة. هنا، نقترح أن تتعلم صراحة نموذجا جيدا على كل من مجموعة الاختبار السهلة مع الإشارات السطحية ومجموعة الاختبار الثابت دون إشارات سطحية. باستخدام هدف التعلم التلوي، نتعلم مثل هذا النموذج الذي يحسن الأداء على كل من مجموعة الاختبار السهلة ومجموعة الاختبار الثابت. من خلال تقييم نماذجنا عند اختيار البدائل المعقولة (COPA) وشرح المنطقي، نوضح أن أسلوبنا المقترح يؤدي إلى تحسين الأداء على كل من مجموعة الاختبارات السهلة ومجموعة الاختبار الصعب الذي نلاحظ عليه ما يصل إلى 16.5 نقطة مئوية من التحسن على أساس الأساس وبعد
يعد إعادة صياغة نص إعادة صياغة مهمة NLP طويلة الأمد لديها تطبيقات متنوعة على مهام NLP المصب. ومع ذلك، تعتمد فعالية الجهود الحالية في الغالب على كميات كبيرة من البيانات الذهبية المسمى. على الرغم من أن المساعي غير الخاضعة للإشعال قد اقترحت تخفيف هذه ال مسألة، إلا أنها قد تفشل في توليد صياغة هادفة بسبب عدم وجود إشارات الإشراف. في هذا العمل، نذهب إلى أبعد من النماذج الحالية واقتراح نهج رواية لتوليد صياغة عالية الجودة مع بيانات الإشراف الضعيف. على وجه التحديد، نتعامل مع مشكلة توليد إعادة صياغة الإشراف ضعيفا من خلال: (1) الحصول على جمل متوازية ضعيفة وفرة عن طريق توسيع إعادة صياغة الزائفة القائمة على استرجاع؛ و (2) تطوير إطار تعليمي التعلم إلى تحديد عينات قيمة تدريجيا لضبط النموذج اللغوي المدرب مسبقا في مهمة إعادة توجيهها مسبقا في مهمة إعادة الصياغة الخطية. نوضح أن نهجنا يحقق تحسينات كبيرة على النهج القائمة غير المدمرة، وهو ما يمكن قابلة للمقارنة في الأداء مع أحدث من الفنون المغلفة.
نحن نعتبر مشكلة تعلم إصلاح برامج ج خاطئة عن طريق تعلم المحاذاة المثلى مع البرامج الصحيحة. نظرا لأن الأساليب السابقة إصلاح خطأ واحد في السطر، فمن المحتمل أنه لا مفر منه لتكرار عملية التثبيت حتى لا تبقى أخطاء. في هذا العمل، نقترح إطارا تعليمي تسلسل تسل سل جديد لتحديد أخطاء برنامج متعددة في وقت واحد. نقدم نهج وضع العلامات على البيانات المسافة من المسافة لتصحيح خطأ البرنامج. بدلا من وصف مثال إصلاح البرنامج عن طريق إقران برنامج خاطئ مع إصلاح خط، نعلم المثال عن طريق تحديد برنامج خاطئ مع محاذاة مثالية إلى البرنامج الصحيح المقابل الناتج عن حساب التحرير المسافة. نقيم نهجنا المقترح في مجموعة بيانات متاحة للجمهور (Deepfix DataSet) التي تتكون من برامج C الخاطئة المقدمة من طلاب البرمجة المبتدئين. على مجموعة من 6،975 برنامجا خاطئا من بيانات DataSet Deepfix، فإن نهجنا يحقق النتيجة الحديثة من حيث معدل الإصلاح الكامل على DeepFix DataSet (بدون بيانات إضافية مثل رسالة خطأ التحويل البرمجي أو رموز مصدر إضافية مسبقا -تمرين).
لكل مهمة حوار موجهة نحو تحقيق الأهداف ذات أهمية، يجب جمع كميات كبيرة من البيانات للحصول على التعلم المنتهي للنظام الحوار العصبي.جمع هذه البيانات هي عملية مكلفة وتستغرق وقتا طويلا.بدلا من ذلك، نوضح أنه يمكننا استخدام كمية صغيرة فقط من البيانات، والتي تستكمل البيانات من مهمة حوار ذات صلة.فشل التعلم بسذاجة من البيانات ذات الصلة في تحسين الأداء لأن البيانات ذات الصلة يمكن أن تكون غير متسقة مع المهمة المستهدفة.نحن نصف طريقة تعتمد على التعلم التعريفي والتي تتعلم بشكل انتقائي من بيانات مهمة الحوار ذات الصلة.نهجنا يؤدي إلى تحسينات بدقة كبيرة في مهمة الحوار مثال.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا