ترغب بنشر مسار تعليمي؟ اضغط هنا

تعلم كيفية السؤال: الاستعلام LMS مع مخاليط من المطالبات الناعمة

Learning How to Ask: Querying LMs with Mixtures of Soft Prompts

723   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تم استخدام مطالبات اللغة الطبيعية مؤخرا لتخصيص نماذج اللغة في أداء مهام منظمة العفو الدولية الأخرى، باستخدام نموذج تعبئة داخل الفراغ (Petroni et al.، 2019) أو نموذج استقراء قليل بالرصاص (براون وآخرون، 2020). على سبيل المثال، تحتفظ نماذج اللغة بالمعرفة الواقعية من كورسا التدريب التي يمكن استخراجها من خلال مطالبتها بملء الفراغ "في موجه أساسية. ومع ذلك، أين يأتي هذا المطالبة؟ نستكشف فكرة مطالبات التعلم عن طريق نزول التدرج --- إما مطالبات ضبط دقيقة مأخوذة من العمل السابق، أو بدءا من تهيئة عشوائية. تتكون مطالباتنا من كلمات ناعمة، '' I.E.، ناقلات مستمرة ليست بالضرورة تضمين نوع الكلمات من نموذج اللغة. علاوة على ذلك، لكل مهمة، فإننا نحسن مزيجا من المطالبات، والتعلم الذي يطالب الأكثر فعالية وكيفية الفرقة لهم. عبر العديد من LMS والمهام الإنجليزية المتعددة، يتفوق نهجنا بشكل كبير على الأساليب السابقة، مما يظهر أن المعرفة الواقعية الضمنية في نماذج اللغة قد تم التقليل من السابق. علاوة على ذلك، فإن هذه المعرفة رخيصة للاستيلاء: تهيئة عشوائية جيدة مثل التهيئة المستنيرة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نقدم نهجا للتعلم اكتشاف سقالة لإدخال مفاهيم في دورة معالجة اللغة الطبيعية تهدف إلى طلاب علوم الكمبيوتر في مؤسسات الفنون الليبرالية.نحن نصف بعض أهداف هذا النهج، بالإضافة إلى تقديم طرق محددة أن أربعة من المهام التي تعتمد على اكتشافها تجمع بين مفاهيم مع الجة اللغة الطبيعية المحددة مع مهارات تحليلية أوسع.نقول أن هذا النهج يساعد في إعداد الطلاب للحصول على العديد من المسارات المستقبلية الممكنة التي تنطوي على تطبيق وابتكار تكنولوجيا NLP من خلال التركيز على الملاحة التجريبية للبيانات، وتصميم التجريب، والوعي في تعقيدات وتحديات التحليل.
القيلات السحائية النخاعية آفة كثيرة الشيوع ببلادنا، و للأسف معظم الإصابات بها تنتهي بإعاقة و عاهة دائمة، و قسم كبير من هؤلاء الأطفال نفقدهم بالتهاب سحايا عقابيل تلك القيلات. و هنا نطرح التساؤل: لِم هذه الآفات شائعة ببلادنا في حين أصبحت شبه نادرة بال بلدان المتقدمة؟ لا تزال نسبة القيلات السحائية النخاعية التي تراجع مشفى الأطفال و غيره من المراكز الصحية شائعة جداً فيجب معرفة ما الأسباب و العوامل المؤهبة لحدوثها، و ذلك بغية التقليل من نسبة حدوثها و معرفة مدى علاقتها بالحمل و ظروف الحمل و صلة القربى بين الأبوين و تناول حمض الفوليك لدى الحامل.
مجردة، نقدم محول تحرير يعتمد على إعادة تحديد موضع (محرر)، مما يجعل توليد التسلسل مرنا بسلاسة يسمح للمستخدمين بسلاسة لتحديد التفضيلات في الاختيار المعجمي الإخراج.بناء على النماذج الأخيرة لتوليد التسلسل غير التلقائي (GU al.، 2019)، يولد المحرر تسلسلات جديدة من خلال تحرير الفرضيات الإثارة.يعتمد على عملية "إعادة وضع رواية" مصممة لتفكيك الاختيار المعجمي من قرارات تحديد المواقع Word، مع تمكين الأوراج الفعالة للتعلم التقليد والتحرير الموازي في وقت فك التشفير.من التجريبية، يستخدم المحرر القيود المعجمية الناعمة بشكل أكثر فعالية من محول Levenshtein (Gu et al.، 2019) أثناء تسريع فك التشفير بشكل كبير مقارنة بشكل كبير بالبحث عن شعاع (Post and Vilar، 2018).يحقق المحرر أيضا جودة ترجمة قابلة للمقارنة أو أفضل مع سرعة فك التشفير أسرع من مهام الترجمة الآلية الرومانية والإنجليزية والإنجليزية والإنجليزية.
مهمة مهمة في تطبيقات NLP مثل تبسيط الجملة هي القدرة على اتخاذ جملة طويلة ومعقدة وتقسيمها إلى جمل أقصر، وإعادة صياغة حسب الضرورة. نقدم مجموعة بيانات جديدة ونموذج جديد لهذه المهمة الانقسام وإعادة صياغة. تتكون بياناتنا في Bisect التدريبية من 1 مليون جمل إنجليزية طويلة مقترن بأجمل الإنجليزية الأقصر والمعاواة بينها. نحصل على هؤلاء من خلال استخراج محاذاة جملة واحدة في فورانيا متوازية ثنائية اللغة ثم استخدام الترجمة الآلية لتحويل كلا الجانبين من الجور إلى نفس اللغة. يحتوي Bisect على أمثلة تدريبية ذات جودة أعلى من SPORTA SPORTA السابق وإعادة صياغتها، مع انشقاقات الجملة التي تتطلب تعديلات أكثر أهمية. نقوم بتصنيف أمثلة في Corpus لدينا واستخدام هذه الفئات في نموذج جديد يتيح لنا استهداف مناطق محددة من جملة المدخلات التي سيتم تقسيمها وتحريرها. علاوة على ذلك، نوضح أن النماذج المدربة على Bisect يمكن أن تؤدي مجموعة متنوعة واسعة من العمليات المنقسمة وتحسينها على النهج السابقة للحالة السابقة في التقييمات التلقائية والبشرية.
في حين أن النماذج اللغوية المدربة مسبقا (PLMS) هي محلول الذهاب لمعالجة العديد من مشاكل معالجة اللغة الطبيعية، فإنها لا تزال محدودة للغاية في قدرتها على التقاط ومعرفة المعيشية المشتركة. في الواقع، حتى إذا كانت المعلومات متوفرة في شكل قواعد منطقية تقري بية (ناعمة)، فليس من الواضح كيفية نقلها إلى PLM من أجل تحسين أدائها لمهام التفكير الاستنتاجي. هنا، نهدف إلى سد هذه الفجوة من خلال تدريس PLMS كيفية التفكير مع قواعد القرن الناعمة. نقدم مهمة التصنيف حيث، بالنظر إلى الحقائق والقواعد الناعمة، يجب أن تعيد PLM التنبؤ باحتمال فرضية معينة. نقوم بإصدار بيانات البيانات الأولى لهذه المهمة، ونقترح وظيفة الخسارة المنقحة التي تمكن PLM لتعلم كيفية التنبؤ بحتميات دقيقة للمهمة. تظهر نتائج التقييم الخاصة بنا أن النماذج الناتجة عن القسرية تحقق أداء عال للغاية، حتى على القواعد المنطقية التي كانت غير مرئية في التدريب. علاوة على ذلك، فإننا نوضح أن المفاهيم المنطقية التي أعربنا عنها القواعد يتم نقلها إلى النموذج الدقيق، مما يؤدي إلى نتائج أحدث النتائج على مجموعات البيانات الخارجية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا