المفارقة والكشف عن المعنويات مهمة لفهم سلوك الناس وأفكار الناس.وبالتالي أصبحت مهمة شعبية في معالجة اللغة الطبيعية (NLP).هذه الورقة تقدم النتائج والنتائج الرئيسية في المهام المشتركة WANLP 2021 واحدة واثنين.استندت المهمة إلى DataSet Arsarcasm-V2 (أبو فرحة وآخرون، 2021).في هذه الورقة، نحن نصف نظامنا متعدد الرؤوس LSTM-CNN-GRU وكذلك ماربرت (عبد المجيد وآخرون، 2021) مقدم لهذه المهمة المشتركة، المرتبة 10 من أصل 27 في مهمة مشتركة تحقيق واحد 0.5662 F1-Sarcasmوتحتل المرتبة 3 من 22 في المهمة المشتركة اثنين من تحقيق 0.7321 F1-PN تحت اسم مستخدم Codalab Rematchka ''.لقد جربنا نماذج مختلفة، وهناك نماذج أفضل أداء هي مجموعة من cnn-lstm متعددة برأسنا، حيث استخدمنا نص prepossessed و emoji المقدمة من تغريدات وماربرت.
Irony and Sentiment detection is important to understand people's behavior and thoughts. Thus it has become a popular task in natural language processing (NLP). This paper presents results and main findings in WANLP 2021 shared tasks one and two. The task was based on the ArSarcasm-v2 dataset (Abu Farha et al., 2021). In this paper, we describe our system Multi-headed-LSTM-CNN-GRU and also MARBERT (Abdul-Mageed et al., 2021) submitted for the shared task, ranked 10 out of 27 in shared task one achieving 0.5662 F1-Sarcasm and ranked 3 out of 22 in shared task two achieving 0.7321 F1-PN under CodaLab username rematchka''. We experimented with various models and the two best performing models are a Multi-headed CNN-LSTM-GRU in which we used prepossessed text and emoji presented from tweets and MARBERT.
المراجع المستخدمة
https://aclanthology.org/
توفر هذه الورقة نظرة عامة على المهمة المشتركة WANLP 2021 بشأن السخرية والكشف عن المعنويات باللغة العربية.المهمة المشتركة لها مفتاحان فرعي: الكشف عن السخرية (الفرعية 1) وتحليل المعرفات (SubTask 2).تهدف هذه المهمة المشتركة إلى الترويج والاهتمام بالكشف
في هذه المهمة المشتركة، تقترح هذه الورقة طريقة للجمع بين نموذج ناقلات Word القائم على BERT ومقدمة تنبؤ LSTM للتنبؤ بقيم التكافؤ والإثارة في النص.من بينها، ناقل الكلمات المستند إلى بيرت هو 768 ثيم، ويتم تغذية كل ناقلات كلمة في الجملة بالتتابع لطراز LS
تقدم هذه الورقة استراتيجيتنا لمعالجة المهمة المشتركة EACL WANLP-2021: السخرية والكشف عن المعنويات.يهدف أحد المهن الفرعية إلى تطوير نظام يحدد ما إذا كانت سقسقة عربية معينة ساخرة في الطبيعة أم لا، في حين أن الآخر يهدف إلى تحديد مشاعر سقسقة اللغة العربي
نحن نستخدم محولات Macbert وضبطها بشكل جيد على المهام المشتركة Rocling-2021 باستخدام بيانات CVAT و CVAS.قارنا أداء ماكبيرت مع اثنين من المحولاتين الآخرين وروبرتا في الأبعاد الإثارة، على التوالي.تم استخدام معامل ماي والارتباط (ص) كمقاييس التقييم.على مج
السخرية هي واحدة من التحديات الرئيسية لأنظمة تحليل المعنويات بسبب استخدام الصياغة غير المباشرة الضمنية للتعبير عن الآراء، وخاصة باللغة العربية.تقدم هذه الورقة النظام الذي قدمناه إلى المهمة الكشف عن السخرية والشاحنات الخاصة بمهمة WANLP-2021 القادرة عل