ترغب بنشر مسار تعليمي؟ اضغط هنا

Deepblueai في WanlP-EACL2021 المهمة 2: طريقة قائمة على أساس عميق للاستخراج والكشف عن المعنويات باللغة العربية

DeepBlueAI at WANLP-EACL2021 task 2: A Deep Ensemble-based Method for Sarcasm and Sentiment Detection in Arabic

359   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

السخرية هي واحدة من التحديات الرئيسية لأنظمة تحليل المعنويات بسبب استخدام الصياغة غير المباشرة الضمنية للتعبير عن الآراء، وخاصة باللغة العربية.تقدم هذه الورقة النظام الذي قدمناه إلى المهمة الكشف عن السخرية والشاحنات الخاصة بمهمة WANLP-2021 القادرة على التعامل مع كل من المهارات الفرعية.نقوم أولا بإجراء ضبط جيد على نوعين من نماذج اللغة المدربة مسبقا (PLMS) مع استراتيجيات تدريب مختلفة.ثم يتم تطبيق آلية تكديس فعالة على رأس Plms المصنفات الدقيقة للحصول على التنبؤ النهائي.النتائج التجريبية على DataSet Arsarcasm-V2 تظهر فعالية طريقتنا ونحن نحتل المرتبة الثالثة والثانية للحصول على التراكب الفرعي 1 و 2.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

توفر هذه الورقة نظرة عامة على المهمة المشتركة WANLP 2021 بشأن السخرية والكشف عن المعنويات باللغة العربية.المهمة المشتركة لها مفتاحان فرعي: الكشف عن السخرية (الفرعية 1) وتحليل المعرفات (SubTask 2).تهدف هذه المهمة المشتركة إلى الترويج والاهتمام بالكشف عن السخرية العربية، وهو أمر بالغ الأهمية لتحسين الأداء في مهام أخرى مثل تحليل المعرفات.تتكون DataSet المستخدمة في هذه المهمة المشتركة، وهي Arsarcasm-V2، من 15،548 تغريدات تسمى السخرية والشعور واللهجة.تلقينا 27 و 22 عروضا للمجموعات الفرعية 1 و 2 على التوالي.تعتمد معظم النهج على استخدام النماذج اللغوية المدربة مسبقا وضبطها جيدا مثل أرابيرت وماربرت.وكانت أفضل النتائج التي تحققت في مهام تحليل السخرية وتحليل المعنويات 0.6225 F1 و 0.748 F1-PN على التوالي.
وصفنا نظامنا المقدم لهذه المهمة المشتركة 2021 بشأن السخرية والكشف عن المعنويات باللغة العربية (أبو فرحة وآخرون، 2021).لقد تناولنا كل من المجموعات الفرعية، وهما اكتشاف السخرية (الفرعية 1) وتحليل المعرفات (SubTask 2).استخدمنا نماذج تمثيل نصية محكومة لل حالة من بين الفنون وتصنفها بشكل جيد وفقا لمهمة المصب في متناول اليد.كهدودي أول، استخدمنا بيرت متعددة اللغات من Google ثم المتغيرات العربية الأخرى: أرابيرت وأشرر وماربيرت.وجدت النتائج تظهر أن Marbert تفوقت على جميع النماذج المذكورة مسبقا بشكل عام، إما على التراكب الفرعي 1 أو Subtask 2.
تشكل بروز أجهزة اللغة التصويرية، مثل السخرية والمفارقة، تحديات خطيرة لتحليل المعنويات العربية (SA).في حين أن أعمال البحث السابقة تعامل معها واكتشاف السخرية بشكل منفصل، تقدم هذه الورقة نموذجا للتعلم العميق المتعدد للمكملات المتعددة الإنهائية (MTL)، مم ا يتيح تفاعل المعرفة بين المهامتين.تتكون بنية MTL Model الخاصة بنا من تمثيل ترميز ثنائي الاتجاه من طراز المحولات (Bert)، وحدة تفاعل انتباه متعددة المهام، واثنين من مصنفين المهامين.تظهر النتائج الإجمالية التي تم الحصول عليها أن نموذجنا المقترح تتفوق على نظرائه المهمة الواحدة و MTL على كل من المهاجمة والشعور الفرعي للكشف عن المعنويات.
تجذب تصنيف المعنويات والكشف عن السخرية الكثير من الاهتمام من قبل مجتمع البحوث NLP. ومع ذلك، فإن حل هاتين المشكلتين باللغة العربية وعلى أساس بيانات الشبكة الاجتماعية (I.E.، Twitter) لا يزال مصلحة أقل. في هذه الورقة نقدم حلولا مخصصة لتصنيف المعنويات وم هام الكشف عن السخرية التي تم تقديمها كجزء من مهمة مشتركة من قبل أبو فرحة وآخرون. (2021). نقوم بضبط نماذج المحولات الحالية المحولات الحالية لاحتياجاتنا. بالإضافة إلى ذلك، نستخدم مجموعة متنوعة من تقنيات التعلم الآلي مثل أخذ العينات الأولية والتكبير والتعبئة والتغليف واستخدام ميزات META لتحسين أداء النماذج. نحن نحقق درجة F1 من 0.75 على مشكلة تصنيف المعنويات حيث يتم حساب درجة F1 على الفصول الإيجابية والسلبية (لا يتم أخذ الفصل المحايد في الاعتبار). نحن نحقق درجة F1 من 0.66 فوق مشكلة الكشف عن السخرية حيث يتم حساب درجة F1 عبر الفئة الساخرة فقط. في كلتا الحالتين، يتم تقييم النتائج المذكورة أعلاه على Arsarcasm-V2 - مجموعة بيانات ممتدة من Arsarcasm (Farha و Magdy، 2020) تم تقديمها كجزء من المهمة المشتركة. هذا يعكس تحسنا لتحقيق أحدث النتائج في كلتا المهام.
نقدم ثلاث طرق تم تطويرها للمهمة المشتركة بشأن السخرية والكشف عن المعنويات باللغة العربية.نقدم خط الأساس الذي يستخدم ميزات شخصية N-Gram.نقترح أيضا طريقتين أكثر تطورا: شبكة عصبية متكررة مع تمثيل مستوى الكلمة وتصنيف الفرقة تعتمد على ميزات Word ومستوى ال أحرف.لقد اخترنا تقديم نتائج من مصنف الفرقة، لكن لم يكن ناجحا للغاية مقارنة بأفضل النظم: 22/37 بشأن اكتشاف السخرية و 15/22 على اكتشاف المعنويات.لقد بدا أخيرا أن خط الأساس لدينا قد تم تحسينه وتغلب على تلك النتائج.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا