ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards an Effective Theory of Small-x QCD

52   0   0.0 ( 0 )
 نشر من قبل Carlo Ewerz
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English
 تأليف C. Ewerz




اسأل ChatGPT حول البحث

In this talk I describe recent progress in investigating the high energy limit of perturbative QCD. I review some of the steps that have been done in the direction of constructing an effective field theory for this limit. I describe some of its building blocks and explain why we expect the effective theory to be a 2+1-dimensional conformal field theory.



قيم البحث

اقرأ أيضاً

160 - Yiannis Makris , Ivan Vitev 2019
The problem of quarkonium production in heavy ion collisions presents a set of unique theoretical challenges -- from the relevant production mechanism of $J/psi$ and $Upsilon$ to the relative significance of distinct cold and hot nuclear matter effec ts in the observed attenuation of quarkonia. Inthese proceedings we summarize recent work on the generalization of non-relativistic Quantum Chromodynamics (NRQCD) to include off-shell gluon (Glauber/Coulomb) interactions in strongly interacting matter. This new effective theory provides for the first time a universal microscopic description of the in-medium interaction of heavy quarkonia, consistently applicable to a range of phases such as cold nuclear matter, dense hadron gas, and quark-gluon plasma. It is an important step forward in understanding the common trends in proton-nucleus and nucleus-nucleus data on quarkonium suppression. We derive explicitly the leading and sub-leading interaction terms in the Lagrangian and show the connection of the leading result to existing phenomenology.
In this work we apply effective field theory (EFT) to observables in quarkonium production and decay that are sensitive to soft gluon radiation, in particular measurements that are sensitive to small transverse momentum. Within the EFT framework we s tudy $chi_Q$ decay to light quarks followed by the fragmentation of those quarks to light hadrons. We derive a factorization theorem that involves transverse momentum distribution (TMD) fragmentation functions and new quarkonium TMD shape functions. We derive renormalization group equations, both in rapidity and virtuality, which are used to evolve the different terms in the factorization theorem to resum large logarithms. This theoretical framework will provide a systematic treatment of quarkonium production and decay processes in TMD sensitive measurements.
In this work, we carried out quantum many-body studies of magnetic monopole ensembles through numerical simulations of the path integral for one- and two-component Coulomb Bose systems. We found the relation between the critical temperature for the B ose-Einstein condensation phase transition and the Coulomb coupling strength using two methods, the finite-size scaling of the superfluid fraction and statistical analysis of permutation cycles. After finding parameters that match the correlation functions measured in our system with the correlation functions previously measured on the lattice, we arrived at an effective quantum model of color magnetic monopoles in QCD. From this matched model, we were able to extract the monopole contribution to QCD equation of state near $T_text{c}$.
We present the first quantum field theory model of inflation that is renormalizable in the matter sector, with a super-Hubble inflaton mass and sub-Planckian field excursions, which is thus technically natural and consistent with a high-energy comple tion within a theory of quantum gravity. This is done in the framework of warm inflation, where we show, for the first time, that strong dissipation can fully sustain a slow-roll trajectory with slow-roll parameters larger than unity in a way that is both theoretically and observationally consistent. The inflaton field corresponds to the relative phase between two complex scalar fields that collectively break a U(1) gauge symmetry, and dissipates its energy into scalar degrees of freedom in the warm cosmic heat bath. A discrete interchange symmetry protects the inflaton mass from large thermal corrections. We further show that the dissipation coefficient decreases with temperature in certain parametric regimes, which prevents a large growth of thermal inflaton fluctuations. We find, in particular, a very good agreement with the Planck legacy data for a simple quadratic inflaton potential, predicting a low tensor-to-scalar ratio $rlesssim 10^{-5}$.
We consider the effect of higher twist operators of the Wilson operator product expansion in the structure function $F_{2}(x,Q^{2})$ at small-$x$, taking into account QCD effective charges whose infrared behavior is constrained by a dynamical mass sc ale. The higher twist corrections are obtained from the renormalon formalism. Our analysis is performed within the conventional framework of next-to-leading order, with the factorization and renormalization scales chosen to be $Q^{2}$. The infrared properties of QCD are treated in the context of the generalized double-asymptotic-scaling approximation. We show that the corrections to $F_{2}$ associated with twist-four and twist-six are both necessary and sufficient for a good description of the deep infrared experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا