ترغب بنشر مسار تعليمي؟ اضغط هنا

An effective field theory approach to quarkonium at small transverse momentum

83   0   0.0 ( 0 )
 نشر من قبل Yiannis Makris
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we apply effective field theory (EFT) to observables in quarkonium production and decay that are sensitive to soft gluon radiation, in particular measurements that are sensitive to small transverse momentum. Within the EFT framework we study $chi_Q$ decay to light quarks followed by the fragmentation of those quarks to light hadrons. We derive a factorization theorem that involves transverse momentum distribution (TMD) fragmentation functions and new quarkonium TMD shape functions. We derive renormalization group equations, both in rapidity and virtuality, which are used to evolve the different terms in the factorization theorem to resum large logarithms. This theoretical framework will provide a systematic treatment of quarkonium production and decay processes in TMD sensitive measurements.



قيم البحث

اقرأ أيضاً

476 - U. DAlesio , F. Murgia , C. Pisano 2020
In this contribution, we will present a short overview of the transverse momentum dependent (TMD) approach as a tool for studying the 3-dimensional structure of hadrons in high-energy (un)polarized hadron collisions. We will then summarize the presen t status of a running research programme that aims at constraining the poorly known transverse momentum dependent gluon Sivers function, through the study of single spin asymmetries in quarkonium (mainly $J/psi$), pion, and $D$-meson production in polarized proton-proton collisions at RHIC. Finally, we will shortly discuss perspectives for this field of research, emphasizing in particular its role in the physics programme of LHC in the fixed-target setup and NICA.
Transverse momentum dependent (TMD) distributions at small x exhibit a rich infinite twist structure that encompasses the leading twist (partonic) distributions as well as the physics of gluon saturation. Progress to further the connection between th e standard TMD framework at moderate x and small x has been recently made. In this context, we show that light cone Wilson line operators at small-x can be formulated in terms of transverse gauge links. This new formulation of small x operators allows a direct matching with the standard leading twist gluon TMD distributions and provides an efficient and general prescription for computing TMD distributions at small x beyond leading twist.
Transverse densities describe the distribution of charge and current at fixed light-front time and provide a frame-independent spatial representation of hadrons as relativistic systems. We calculate the transverse densities of the octet baryons at pe ripheral distances b = O(M_pi^{-1}) in an approach combining chiral effective field theory (ChEFT) and dispersion analysis. The densities are represented as dispersive integrals of the imaginary parts of the baryon electromagnetic form factors in the timelike region (spectral functions). The spectral functions on the two-pion cut at t > 4 M_pi^2 are computed using relativistic ChEFT with octet and decuplet baryons in the EOMS renormalization scheme. The calculations are extended into the rho-meson mass region, using a dispersive method that incorporates the timelike pion form-factor data. The approach allows us to construct densities at distances b > 1 fm with controlled uncertainties. Our results provide insight into the peripheral structure of nucleons and hyperons and can be compared with empirical densities and lattice-QCD calculations.
We derive analytical results for unintegrated color dipole gluon distribution function at small transverse momentum. By Fourier transforming the $S$-matrix for large dipoles we derive the results in the form of a series of Bells polynomials. Interest ingly, when resumming the series in leading log accuracy, the results showing up striking similarity with the Sudakov form factor with role play of coupling is being done by a constant that stems from the saddle point condition along the saturation line.
In this work we investigate the interaction between spin-zero and spin-one monopoles by making use of an effective field theory based on two-body and four-body interaction parts. In particular, we analyze the formation of bound state of monopole-anti monopole (i.e. monopolium). The magnetic-charge conjugation symmetry is studied in analogy to the usual charge conjugation to define a particle basis, for which we find bound-state solutions with relatively small binding energies and which allows us to identify the bounds on the parameters in the effective Lagrangians. Estimations of their masses, binding energies and scattering lengths are performed as functions of monopole masses and interaction strength in a specific renormalization scheme. We also examine the general validity of the approach and the feasibility of detecting the monopolium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا