ترغب بنشر مسار تعليمي؟ اضغط هنا

An Effective Model of QCD Monopoles

111   0   0.0 ( 0 )
 نشر من قبل Adith Ramamurti
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we carried out quantum many-body studies of magnetic monopole ensembles through numerical simulations of the path integral for one- and two-component Coulomb Bose systems. We found the relation between the critical temperature for the Bose-Einstein condensation phase transition and the Coulomb coupling strength using two methods, the finite-size scaling of the superfluid fraction and statistical analysis of permutation cycles. After finding parameters that match the correlation functions measured in our system with the correlation functions previously measured on the lattice, we arrived at an effective quantum model of color magnetic monopoles in QCD. From this matched model, we were able to extract the monopole contribution to QCD equation of state near $T_text{c}$.



قيم البحث

اقرأ أيضاً

Magnetic monopoles are suggested to play an important role in strongly coupled quark-gluon plasma (sQGP) near the deconfinement temperature. So far, their many-body treatment has only been done classically, with just binary scattering solved in quant um mechanics. In this paper we start quantum many-body studies of the monopole ensembles. Specifically, we carry out numerical simulations of the path integral for one- and two-component Coulomb Bose systems. We determine the relation between the critical temperature for the Bose-Einstein condensation phase transition $T_text{c}$ and the Coulomb coupling strength using two methods, the classic finite-size scaling of the condensate and a lattice-tested method based on permutation cycles. For a one-component Coulomb Bose gas, we observe the same behavior of the critical temperature -- initially rising slightly then falling as interaction strength is increased -- as seen in the case of hard spheres; we also observe the same behavior for a two-component Coulomb Bose gas. We then calculate sets of radial correlation functions between the like and unlike charged particles. By matching those with the correlation functions previously calculated on the lattice, we derive an effective quantum model of color magnetic monopoles in QCD. From this matched model, we are able to extract the monopole contribution to QCD equation of state near $T_text{c}$.
Temperature dependence of pion and sigma-meson screening masses is evaluated by the Polyakov-loop extended Nambu--Jona-Lasinio model with the entanglement vertex (EPNJL model). We propose a practical way of calculating meson screening masses in the N JL-type effective models. The method based on the Pauli-Villars regularization solves the well-known difficulty that the evaluation of screening masses is not easy in the NJL-type effective models. The method is applied to analyze temperature dependence of pion screening masses calculated with state-of-the-art lattice simulations with success in reproducing the lattice QCD results. We predict the temperature dependence of pole mass by using EPNJL model.
To understand the phase transition phenomena, information theoretical approaches can pick up some important properties of the phenomena based on the probability distribution. In this paper, we show information theoretical aspects of the 3-dimensional 3-state Potts model with the external field which is corresponding to the QCD effective model with heavy quarks. The transfer mutual information which represents the information flow of two spin variables is numerically estimated based on the Markov-chain Monte-Carlo method. The transfer mutual information has the peak near the confinement-deconfinement transition, and it may be used to detect the precursors of the transition. Since the transfer mutual information still have the peak even if the Polyakov-loop changes continuously and smoothly, we may pick up some aspects of the confinement-deconfinement nature from the information flow properties. Particularly, the transfer mutual information shows the significantly different behavior below and above the Roberge-Weiss endpoint existed in the pure imaginary chemical potential region, which may indicate the system change by the confinement-deconfinement transition.
We analyse the role of the quark backreaction on the gauge-field dynamics and its impact on the Polyakov-loop potential. Based on our analysis we construct an improved Polyakov-loop potential that can be used in future model studies. In the present w ork, we employe this improved potential in a study of a 2+1 flavour Polyakov-quark-meson model and show that the temperature dependence of the order parameters and thermodynamics is closer to full QCD. We discuss the results for QCD thermodynamics and outline briefly the dependence of our results on the critical temperature and the parametrisation of the Polyakov-loop potential as well as the mass of the sigma-meson.
We apply the path optimization method to a QCD effective model with the Polyakov loop at finite density to circumvent the model sign problem. The Polyakov-loop extended Nambu--Jona-Lasinio model is employed as the typical QCD effective model and then the hybrid Monte-Carlo method is used to perform the path integration. To control the sign problem, the path optimization method is used with complexification of temporal gluon fields to modify the integral path in the complex space. We show that the average phase factor is well improved on the modified integral-path compared with that on the original one. This indicates that the complexification of temporal gluon fields may be enough to control the sign problem of QCD in the path optimization method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا