ترغب بنشر مسار تعليمي؟ اضغط هنا

Active Local Learning

85   0   0.0 ( 0 )
 نشر من قبل Neha Gupta
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we consider active local learning: given a query point $x$, and active access to an unlabeled training set $S$, output the prediction $h(x)$ of a near-optimal $h in H$ using significantly fewer labels than would be needed to actually learn $h$ fully. In particular, the number of label queries should be independent of the complexity of $H$, and the function $h$ should be well-defined, independent of $x$. This immediately also implies an algorithm for distance estimation: estimating the value $opt(H)$ from many fewer labels than needed to actually learn a near-optimal $h in H$, by running local learning on a few random query points and computing the average error. For the hypothesis class consisting of functions supported on the interval $[0,1]$ with Lipschitz constant bounded by $L$, we present an algorithm that makes $O(({1 / epsilon^6}) log(1/epsilon))$ label queries from an unlabeled pool of $O(({L / epsilon^4})log(1/epsilon))$ samples. It estimates the distance to the best hypothesis in the class to an additive error of $epsilon$ for an arbitrary underlying distribution. We further generalize our algorithm to more than one dimensions. We emphasize that the number of labels used is independent of the complexity of the hypothesis class which depends on $L$. Furthermore, we give an algorithm to locally estimate the values of a near-optimal function at a few query points of interest with number of labels independent of $L$. We also consider the related problem of approximating the minimum error that can be achieved by the Nadaraya-Watson estimator under a linear diagonal transformation with eigenvalues coming from a small range. For a $d$-dimensional pointset of size $N$, our algorithm achieves an additive approximation of $epsilon$, makes $tilde{O}({d}/{epsilon^2})$ queries and runs in $tilde{O}({d^2}/{epsilon^{d+4}}+{dN}/{epsilon^2})$ time.

قيم البحث

اقرأ أيضاً

We propose a new batch mode active learning algorithm designed for neural networks and large query batch sizes. The method, Discriminative Active Learning (DAL), poses active learning as a binary classification task, attempting to choose examples to label in such a way as to make the labeled set and the unlabeled pool indistinguishable. Experimenting on image classification tasks, we empirically show our method to be on par with state of the art methods in medium and large query batch sizes, while being simple to implement and also extend to other domains besides classification tasks. Our experiments also show that none of the state of the art methods of today are clearly better than uncertainty sampling when the batch size is relatively large, negating some of the reported results in the recent literature.
Data-efficient learning algorithms are essential in many practical applications where data collection is expensive, e.g., in robotics due to the wear and tear. To address this problem, meta-learning algorithms use prior experience about tasks to lear n new, related tasks efficiently. Typically, a set of training tasks is assumed given or randomly chosen. However, this setting does not take into account the sequential nature that naturally arises when training a model from scratch in real-life: how do we collect a set of training tasks in a data-efficient manner? In this work, we introduce task selection based on prior experience into a meta-learning algorithm by conceptualizing the learner and the active meta-learning setting using a probabilistic latent variable model. We provide empirical evidence that our approach improves data-efficiency when compared to strong baselines on simulated robotic experiments.
Deep learning models have demonstrated outstanding performance in several problems, but their training process tends to require immense amounts of computational and human resources for training and labeling, constraining the types of problems that ca n be tackled. Therefore, the design of effective training methods that require small labeled training sets is an important research direction that will allow a more effective use of resources.Among current approaches designed to address this issue, two are particularly interesting: data augmentation and active learning. Data augmentation achieves this goal by artificially generating new training points, while active learning relies on the selection of the most informative subset of unlabeled training samples to be labelled by an oracle. Although successful in practice, data augmentation can waste computational resources because it indiscriminately generates samples that are not guaranteed to be informative, and active learning selects a small subset of informative samples (from a large un-annotated set) that may be insufficient for the training process. In this paper, we propose a Bayesian generative active deep learning approach that combines active learning with data augmentation -- we provide theoretical and empirical evidence (MNIST, CIFAR-${10,100}$, and SVHN) that our approach has more efficient training and better classification results than data augmentation and active learning.
Supervised machine learning methods usually require a large set of labeled examples for model training. However, in many real applications, there are plentiful unlabeled data but limited labeled data; and the acquisition of labels is costly. Active l earning (AL) reduces the labeling cost by iteratively selecting the most valuable data to query their labels from the annotator. This article introduces a Python toobox ALiPy for active learning. ALiPy provides a module based implementation of active learning framework, which allows users to conveniently evaluate, compare and analyze the performance of active learning methods. In the toolbox, multiple options are available for each component of the learning framework, including data process, active selection, label query, results visualization, etc. In addition to the implementations of more than 20 state-of-the-art active learning algorithms, ALiPy also supports users to easily configure and implement their own approaches under different active learning settings, such as AL for multi-label data, AL with noisy annotators, AL with different costs and so on. The toolbox is well-documented and open-source on Github, and can be easily installed through PyPI.
We present a new active learning algorithm that adaptively partitions the input space into a finite number of regions, and subsequently seeks a distinct predictor for each region, both phases actively requesting labels. We prove theoretical guarantee s for both the generalization error and the label complexity of our algorithm, and analyze the number of regions defined by the algorithm under some mild assumptions. We also report the results of an extensive suite of experiments on several real-world datasets demonstrating substantial empirical benefits over existing single-region and non-adaptive region-based active learning baselines.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا