ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Generative Active Deep Learning

188   0   0.0 ( 0 )
 نشر من قبل Toan Minh Tran Mr
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning models have demonstrated outstanding performance in several problems, but their training process tends to require immense amounts of computational and human resources for training and labeling, constraining the types of problems that can be tackled. Therefore, the design of effective training methods that require small labeled training sets is an important research direction that will allow a more effective use of resources.Among current approaches designed to address this issue, two are particularly interesting: data augmentation and active learning. Data augmentation achieves this goal by artificially generating new training points, while active learning relies on the selection of the most informative subset of unlabeled training samples to be labelled by an oracle. Although successful in practice, data augmentation can waste computational resources because it indiscriminately generates samples that are not guaranteed to be informative, and active learning selects a small subset of informative samples (from a large un-annotated set) that may be insufficient for the training process. In this paper, we propose a Bayesian generative active deep learning approach that combines active learning with data augmentation -- we provide theoretical and empirical evidence (MNIST, CIFAR-${10,100}$, and SVHN) that our approach has more efficient training and better classification results than data augmentation and active learning.

قيم البحث

اقرأ أيضاً

Unsupervised active learning has attracted increasing attention in recent years, where its goal is to select representative samples in an unsupervised setting for human annotating. Most existing works are based on shallow linear models by assuming th at each sample can be well approximated by the span (i.e., the set of all linear combinations) of certain selected samples, and then take these selected samples as representative ones to label. However, in practice, the data do not necessarily conform to linear models, and how to model nonlinearity of data often becomes the key point to success. In this paper, we present a novel Deep neural network framework for Unsupervised Active Learning, called DUAL. DUAL can explicitly learn a nonlinear embedding to map each input into a latent space through an encoder-decoder architecture, and introduce a selection block to select representative samples in the the learnt latent space. In the selection block, DUAL considers to simultaneously preserve the whole input patterns as well as the cluster structure of data. Extensive experiments are performed on six publicly available datasets, and experimental results clearly demonstrate the efficacy of our method, compared with state-of-the-arts.
The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we s how that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork. We propose a subnetwork selection strategy that aims to maximally preserve the models predictive uncertainty. Empirically, our approach is effective compared to ensembles and less expressive posterior approximations over full networks.
Bayesian formulations of deep learning have been shown to have compelling theoretical properties and offer practical functional benefits, such as improved predictive uncertainty quantification and model selection. The Laplace approximation (LA) is a classic, and arguably the simplest family of approximations for the intractable posteriors of deep neural networks. Yet, despite its simplicity, the LA is not as popular as alternatives like variational Bayes or deep ensembles. This may be due to assumptions that the LA is expensive due to the involved Hessian computation, that it is difficult to implement, or that it yields inferior results. In this work we show that these are misconceptions: we (i) review the range of variants of the LA includin
Reinforcement learning (RL) has gained increasing interest since the demonstration it was able to reach human performance on video game benchmarks using deep Q-learning (DQN). The current consensus for training neural networks on such complex environ ments is to rely on gradient-based optimization. Although alternative Bayesian deep learning methods exist, most of them still rely on gradient-based optimization, and they typically do not scale on benchmarks such as the Atari game environment. Moreover none of these approaches allow performing the analytical inference for the weights and biases defining the neural network. In this paper, we present how we can adapt the temporal difference Q-learning framework to make it compatible with the tractable approximate Gaussian inference (TAGI), which allows learning the parameters of a neural network using a closed-form analytical method. Throughout the experiments with on- and off-policy reinforcement learning approaches, we demonstrate that TAGI can reach a performance comparable to backpropagation-trained networks while using fewer hyperparameters, and without relying on gradient-based optimization.
Recent successes of Deep Neural Networks (DNNs) in a variety of research tasks, however, heavily rely on the large amounts of labeled samples. This may require considerable annotation cost in real-world applications. Fortunately, active learning is a promising methodology to train high-performing model with minimal annotation cost. In the deep learning context, the critical question of active learning is how to precisely identify the informativeness of samples for DNN. In this paper, inspired by piece-wise linear interpretability in DNN, we introduce the linearly separable regions of samples to the problem of active learning, and propose a novel Deep Active learning approach by Model Interpretability (DAMI). To keep the maximal representativeness of the entire unlabeled data, DAMI tries to select and label samples on different linearly separable regions introduced by the piece-wise linear interpretability in DNN. We focus on modeling Multi-Layer Perception (MLP) for modeling tabular data. Specifically, we use the local piece-wise interpretation in MLP as the representation of each sample, and directly run K-Center clustering to select and label samples. To be noted, this whole process of DAMI does not require any hyper-parameters to tune manually. To verify the effectiveness of our approach, extensive experiments have been conducted on several tabular datasets. The experimental results demonstrate that DAMI constantly outperforms several state-of-the-art compared approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا