ترغب بنشر مسار تعليمي؟ اضغط هنا

Probabilistic Active Meta-Learning

78   0   0.0 ( 0 )
 نشر من قبل Jean Kaddour
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Data-efficient learning algorithms are essential in many practical applications where data collection is expensive, e.g., in robotics due to the wear and tear. To address this problem, meta-learning algorithms use prior experience about tasks to learn new, related tasks efficiently. Typically, a set of training tasks is assumed given or randomly chosen. However, this setting does not take into account the sequential nature that naturally arises when training a model from scratch in real-life: how do we collect a set of training tasks in a data-efficient manner? In this work, we introduce task selection based on prior experience into a meta-learning algorithm by conceptualizing the learner and the active meta-learning setting using a probabilistic latent variable model. We provide empirical evidence that our approach improves data-efficiency when compared to strong baselines on simulated robotic experiments.

قيم البحث

اقرأ أيضاً

Meta-learning for few-shot learning entails acquiring a prior over previous tasks and experiences, such that new tasks be learned from small amounts of data. However, a critical challenge in few-shot learning is task ambiguity: even when a powerful p rior can be meta-learned from a large number of prior tasks, a small dataset for a new task can simply be too ambiguous to acquire a single model (e.g., a classifier) for that task that is accurate. In this paper, we propose a probabilistic meta-learning algorithm that can sample models for a new task from a model distribution. Our approach extends model-agnostic meta-learning, which adapts to new tasks via gradient descent, to incorporate a parameter distribution that is trained via a variational lower bound. At meta-test time, our algorithm adapts via a simple procedure that injects noise into gradient descent, and at meta-training time, the model is trained such that this stochastic adaptation procedure produces samples from the approximate model posterior. Our experimental results show that our method can sample plausible classifiers and regressors in ambiguous few-shot learning problems. We also show how reasoning about ambiguity can also be used for downstream active learning problems.
We propose probabilistic task modelling -- a generative probabilistic model for collections of tasks used in meta-learning. The proposed model combines variational auto-encoding and latent Dirichlet allocation to model each task as a mixture of Gauss ian distribution in an embedding space. Such modelling provides an explicit representation of a task through its task-theme mixture. We present an efficient approximation inference technique based on variational inference method for empirical Bayes parameter estimation. We perform empirical evaluations to validate the task uncertainty and task distance produced by the proposed method through correlation diagrams of the prediction accuracy on testing tasks. We also carry out experiments of task selection in meta-learning to demonstrate how the task relatedness inferred from the proposed model help to facilitate meta-learning algorithms.
Meta-learning algorithms aim to learn two components: a model that predicts targets for a task, and a base learner that quickly updates that model when given examples from a new task. This additional level of learning can be powerful, but it also cre ates another potential source for overfitting, since we can now overfit in either the model or the base learner. We describe both of these forms of metalearning overfitting, and demonstrate that they appear experimentally in common meta-learning benchmarks. We then use an information-theoretic framework to discuss meta-augmentation, a way to add randomness that discourages the base learner and model from learning trivial solutions that do not generalize to new tasks. We demonstrate that meta-augmentation produces large complementary benefits to recently proposed meta-regularization techniques.
168 - Yingtian Zou , Jiashi Feng 2019
Meta learning is a promising solution to few-shot learning problems. However, existing meta learning methods are restricted to the scenarios where training and application tasks share the same out-put structure. To obtain a meta model applicable to t he tasks with new structures, it is required to collect new training data and repeat the time-consuming meta training procedure. This makes them inefficient or even inapplicable in learning to solve heterogeneous few-shot learning tasks. We thus develop a novel and principled HierarchicalMeta Learning (HML) method. Different from existing methods that only focus on optimizing the adaptability of a meta model to similar tasks, HML also explicitly optimizes its generalizability across heterogeneous tasks. To this end, HML first factorizes a set of similar training tasks into heterogeneous ones and trains the meta model over them at two levels to maximize adaptation and generalization performance respectively. The resultant model can then directly generalize to new tasks. Extensive experiments on few-shot classification and regression problems clearly demonstrate the superiority of HML over fine-tuning and state-of-the-art meta learning approaches in terms of generalization across heterogeneous tasks.
Meta-learning enables a model to learn from very limited data to undertake a new task. In this paper, we study the general meta-learning with adversarial samples. We present a meta-learning algorithm, ADML (ADversarial Meta-Learner), which leverages clean and adversarial samples to optimize the initialization of a learning model in an adversarial manner. ADML leads to the following desirable properties: 1) it turns out to be very effective even in the cases with only clean samples; 2) it is robust to adversarial samples, i.e., unlike other meta-learning algorithms, it only leads to a minor performance degradation when there are adversarial samples; 3) it sheds light on tackling the cases with limited and even contaminated samples. It has been shown by extensive experimental results that ADML consistently outperforms three representative meta-learning algorithms in the cases involving adversarial samples, on two widely-used image datasets, MiniImageNet and CIFAR100, in terms of both accuracy and robustness.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا