ترغب بنشر مسار تعليمي؟ اضغط هنا

Discriminative Active Learning

80   0   0.0 ( 0 )
 نشر من قبل Daniel Gissin
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new batch mode active learning algorithm designed for neural networks and large query batch sizes. The method, Discriminative Active Learning (DAL), poses active learning as a binary classification task, attempting to choose examples to label in such a way as to make the labeled set and the unlabeled pool indistinguishable. Experimenting on image classification tasks, we empirically show our method to be on par with state of the art methods in medium and large query batch sizes, while being simple to implement and also extend to other domains besides classification tasks. Our experiments also show that none of the state of the art methods of today are clearly better than uncertainty sampling when the batch size is relatively large, negating some of the reported results in the recent literature.



قيم البحث

اقرأ أيضاً

Domain Adaptation aiming to learn a transferable feature between different but related domains has been well investigated and has shown excellent empirical performances. Previous works mainly focused on matching the marginal feature distributions usi ng the adversarial training methods while assuming the conditional relations between the source and target domain remained unchanged, $i.e.$, ignoring the conditional shift problem. However, recent works have shown that such a conditional shift problem exists and can hinder the adaptation process. To address this issue, we have to leverage labelled data from the target domain, but collecting labelled data can be quite expensive and time-consuming. To this end, we introduce a discriminative active learning approach for domain adaptation to reduce the efforts of data annotation. Specifically, we propose three-stage active adversarial training of neural networks: invariant feature space learning (first stage), uncertainty and diversity criteria and their trade-off for query strategy (second stage) and re-training with queried target labels (third stage). Empirical comparisons with existing domain adaptation methods using four benchmark datasets demonstrate the effectiveness of the proposed approach.
Although achieving remarkable progress, it is very difficult to induce a supervised classifier without any labeled data. Unsupervised domain adaptation is able to overcome this challenge by transferring knowledge from a labeled source domain to an un labeled target domain. Transferability and discriminability are two key criteria for characterizing the superiority of feature representations to enable successful domain adaptation. In this paper, a novel method called textit{learning TransFerable and Discriminative Features for unsupervised domain adaptation} (TFDF) is proposed to optimize these two objectives simultaneously. On the one hand, distribution alignment is performed to reduce domain discrepancy and learn more transferable representations. Instead of adopting textit{Maximum Mean Discrepancy} (MMD) which only captures the first-order statistical information to measure distribution discrepancy, we adopt a recently proposed statistic called textit{Maximum Mean and Covariance Discrepancy} (MMCD), which can not only capture the first-order statistical information but also capture the second-order statistical information in the reproducing kernel Hilbert space (RKHS). On the other hand, we propose to explore both local discriminative information via manifold regularization and global discriminative information via minimizing the proposed textit{class confusion} objective to learn more discriminative features, respectively. We integrate these two objectives into the textit{Structural Risk Minimization} (RSM) framework and learn a domain-invariant classifier. Comprehensive experiments are conducted on five real-world datasets and the results verify the effectiveness of the proposed method.
In this work we consider active local learning: given a query point $x$, and active access to an unlabeled training set $S$, output the prediction $h(x)$ of a near-optimal $h in H$ using significantly fewer labels than would be needed to actually lea rn $h$ fully. In particular, the number of label queries should be independent of the complexity of $H$, and the function $h$ should be well-defined, independent of $x$. This immediately also implies an algorithm for distance estimation: estimating the value $opt(H)$ from many fewer labels than needed to actually learn a near-optimal $h in H$, by running local learning on a few random query points and computing the average error. For the hypothesis class consisting of functions supported on the interval $[0,1]$ with Lipschitz constant bounded by $L$, we present an algorithm that makes $O(({1 / epsilon^6}) log(1/epsilon))$ label queries from an unlabeled pool of $O(({L / epsilon^4})log(1/epsilon))$ samples. It estimates the distance to the best hypothesis in the class to an additive error of $epsilon$ for an arbitrary underlying distribution. We further generalize our algorithm to more than one dimensions. We emphasize that the number of labels used is independent of the complexity of the hypothesis class which depends on $L$. Furthermore, we give an algorithm to locally estimate the values of a near-optimal function at a few query points of interest with number of labels independent of $L$. We also consider the related problem of approximating the minimum error that can be achieved by the Nadaraya-Watson estimator under a linear diagonal transformation with eigenvalues coming from a small range. For a $d$-dimensional pointset of size $N$, our algorithm achieves an additive approximation of $epsilon$, makes $tilde{O}({d}/{epsilon^2})$ queries and runs in $tilde{O}({d^2}/{epsilon^{d+4}}+{dN}/{epsilon^2})$ time.
99 - Shupeng Gui 2018
Graph embedding is a central problem in social network analysis and many other applications, aiming to learn the vector representation for each node. While most existing approaches need to specify the neighborhood and the dependence form to the neigh borhood, which may significantly degrades the flexibility of representation, we propose a novel graph node embedding method (namely GESF) via the set function technique. Our method can 1) learn an arbitrary form of representation function from neighborhood, 2) automatically decide the significance of neighbors at different distances, and 3) be applied to heterogeneous graph embedding, which may contain multiple types of nodes. Theoretical guarantee for the representation capability of our method has been proved for general homogeneous and heterogeneous graphs and evaluation results on benchmark data sets show that the proposed GESF outperforms the state-of-the-art approaches on producing node vectors for classification tasks.
Data-efficient learning algorithms are essential in many practical applications where data collection is expensive, e.g., in robotics due to the wear and tear. To address this problem, meta-learning algorithms use prior experience about tasks to lear n new, related tasks efficiently. Typically, a set of training tasks is assumed given or randomly chosen. However, this setting does not take into account the sequential nature that naturally arises when training a model from scratch in real-life: how do we collect a set of training tasks in a data-efficient manner? In this work, we introduce task selection based on prior experience into a meta-learning algorithm by conceptualizing the learner and the active meta-learning setting using a probabilistic latent variable model. We provide empirical evidence that our approach improves data-efficiency when compared to strong baselines on simulated robotic experiments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا