ترغب بنشر مسار تعليمي؟ اضغط هنا

ALiPy: Active Learning in Python

66   0   0.0 ( 0 )
 نشر من قبل Sheng-Jun Huang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Supervised machine learning methods usually require a large set of labeled examples for model training. However, in many real applications, there are plentiful unlabeled data but limited labeled data; and the acquisition of labels is costly. Active learning (AL) reduces the labeling cost by iteratively selecting the most valuable data to query their labels from the annotator. This article introduces a Python toobox ALiPy for active learning. ALiPy provides a module based implementation of active learning framework, which allows users to conveniently evaluate, compare and analyze the performance of active learning methods. In the toolbox, multiple options are available for each component of the learning framework, including data process, active selection, label query, results visualization, etc. In addition to the implementations of more than 20 state-of-the-art active learning algorithms, ALiPy also supports users to easily configure and implement their own approaches under different active learning settings, such as AL for multi-label data, AL with noisy annotators, AL with different costs and so on. The toolbox is well-documented and open-source on Github, and can be easily installed through PyPI.



قيم البحث

اقرأ أيضاً

libact is a Python package designed to make active learning easier for general users. The package not only implements several popular active learning strategies, but also features the active-learning-by-learning meta-algorithm that assists the users to automatically select the best strategy on the fly. Furthermore, the package provides a unified interface for implementing more strategies, models and application-specific labelers. The package is open-source on Github, and can be easily installed from Python Package Index repository.
We propose a new batch mode active learning algorithm designed for neural networks and large query batch sizes. The method, Discriminative Active Learning (DAL), poses active learning as a binary classification task, attempting to choose examples to label in such a way as to make the labeled set and the unlabeled pool indistinguishable. Experimenting on image classification tasks, we empirically show our method to be on par with state of the art methods in medium and large query batch sizes, while being simple to implement and also extend to other domains besides classification tasks. Our experiments also show that none of the state of the art methods of today are clearly better than uncertainty sampling when the batch size is relatively large, negating some of the reported results in the recent literature.
In this work we consider active local learning: given a query point $x$, and active access to an unlabeled training set $S$, output the prediction $h(x)$ of a near-optimal $h in H$ using significantly fewer labels than would be needed to actually lea rn $h$ fully. In particular, the number of label queries should be independent of the complexity of $H$, and the function $h$ should be well-defined, independent of $x$. This immediately also implies an algorithm for distance estimation: estimating the value $opt(H)$ from many fewer labels than needed to actually learn a near-optimal $h in H$, by running local learning on a few random query points and computing the average error. For the hypothesis class consisting of functions supported on the interval $[0,1]$ with Lipschitz constant bounded by $L$, we present an algorithm that makes $O(({1 / epsilon^6}) log(1/epsilon))$ label queries from an unlabeled pool of $O(({L / epsilon^4})log(1/epsilon))$ samples. It estimates the distance to the best hypothesis in the class to an additive error of $epsilon$ for an arbitrary underlying distribution. We further generalize our algorithm to more than one dimensions. We emphasize that the number of labels used is independent of the complexity of the hypothesis class which depends on $L$. Furthermore, we give an algorithm to locally estimate the values of a near-optimal function at a few query points of interest with number of labels independent of $L$. We also consider the related problem of approximating the minimum error that can be achieved by the Nadaraya-Watson estimator under a linear diagonal transformation with eigenvalues coming from a small range. For a $d$-dimensional pointset of size $N$, our algorithm achieves an additive approximation of $epsilon$, makes $tilde{O}({d}/{epsilon^2})$ queries and runs in $tilde{O}({d^2}/{epsilon^{d+4}}+{dN}/{epsilon^2})$ time.
Realistic environments often provide agents with very limited feedback. When the environment is initially unknown, the feedback, in the beginning, can be completely absent, and the agents may first choose to devote all their effort on exploring effic iently. The exploration remains a challenge while it has been addressed with many hand-tuned heuristics with different levels of generality on one side, and a few theoretically-backed exploration strategies on the other. Many of them are incarnated by intrinsic motivation and in particular explorations bonuses. A common rule of thumb for exploration bonuses is to use $1/sqrt{n}$ bonus that is added to the empirical estimates of the reward, where $n$ is a number of times this particular state (or a state-action pair) was visited. We show that, surprisingly, for a pure-exploration objective of reward-free exploration, bonuses that scale with $1/n$ bring faster learning rates, improving the known upper bounds with respect to the dependence on the horizon $H$. Furthermore, we show that with an improved analysis of the stopping time, we can improve by a factor $H$ the sample complexity in the best-policy identification setting, which is another pure-exploration objective, where the environment provides rewards but the agent is not penalized for its behavior during the exploration phase.
OpenML is an online platform for open science collaboration in machine learning, used to share datasets and results of machine learning experiments. In this paper we introduce OpenML-Python, a client API for Python, opening up the OpenML platform for a wide range of Python-based tools. It provides easy access to all datasets, tasks and experiments on OpenML from within Python. It also provides functionality to conduct machine learning experiments, upload the results to OpenML, and reproduce results which are stored on OpenML. Furthermore, it comes with a scikit-learn plugin and a plugin mechanism to easily integrate other machine learning libraries written in Python into the OpenML ecosystem. Source code and documentation is available at https://github.com/openml/openml-python/.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا