ترغب بنشر مسار تعليمي؟ اضغط هنا

GESF: A Universal Discriminative Mapping Mechanism for Graph Representation Learning

100   0   0.0 ( 0 )
 نشر من قبل Shupeng Gui
 تاريخ النشر 2018
والبحث باللغة English
 تأليف Shupeng Gui




اسأل ChatGPT حول البحث

Graph embedding is a central problem in social network analysis and many other applications, aiming to learn the vector representation for each node. While most existing approaches need to specify the neighborhood and the dependence form to the neighborhood, which may significantly degrades the flexibility of representation, we propose a novel graph node embedding method (namely GESF) via the set function technique. Our method can 1) learn an arbitrary form of representation function from neighborhood, 2) automatically decide the significance of neighbors at different distances, and 3) be applied to heterogeneous graph embedding, which may contain multiple types of nodes. Theoretical guarantee for the representation capability of our method has been proved for general homogeneous and heterogeneous graphs and evaluation results on benchmark data sets show that the proposed GESF outperforms the state-of-the-art approaches on producing node vectors for classification tasks.

قيم البحث

اقرأ أيضاً

Graph representation learning is a fundamental problem for modeling relational data and benefits a number of downstream applications. Traditional Bayesian-based graph models and recent deep learning based GNN either suffer from impracticability or la ck interpretability, thus combined models for undirected graphs have been proposed to overcome the weaknesses. As a large portion of real-world graphs are directed graphs (of which undirected graphs are special cases), in this paper, we propose a Deep Latent Space Model (DLSM) for directed graphs to incorporate the traditional latent variable based generative model into deep learning frameworks. Our proposed model consists of a graph convolutional network (GCN) encoder and a stochastic decoder, which are layer-wise connected by a hierarchical variational auto-encoder architecture. By specifically modeling the degree heterogeneity using node random factors, our model possesses better interpretability in both community structure and degree heterogeneity. For fast inference, the stochastic gradient variational Bayes (SGVB) is adopted using a non-iterative recognition model, which is much more scalable than traditional MCMC-based methods. The experiments on real-world datasets show that the proposed model achieves the state-of-the-art performances on both link prediction and community detection tasks while learning interpretable node embeddings. The source code is available at https://github.com/upperr/DLSM.
308 - Zhen Yang , Ming Ding , Chang Zhou 2020
Graph representation learning has been extensively studied in recent years. Despite its potential in generating continuous embeddings for various networks, both the effectiveness and efficiency to infer high-quality representations toward large corpu s of nodes are still challenging. Sampling is a critical point to achieve the performance goals. Prior arts usually focus on sampling positive node pairs, while the strategy for negative sampling is left insufficiently explored. To bridge the gap, we systematically analyze the role of negative sampling from the perspectives of both objective and risk, theoretically demonstrating that negative sampling is as important as positive sampling in determining the optimization objective and the resulted variance. To the best of our knowledge, we are the first to derive the theory and quantify that the negative sampling distribution should be positively but sub-linearly correlated to their positive sampling distribution. With the guidance of the theory, we propose MCNS, approximating the positive distribution with self-contrast approximation and accelerating negative sampling by Metropolis-Hastings. We evaluate our method on 5 datasets that cover extensive downstream graph learning tasks, including link prediction, node classification and personalized recommendation, on a total of 19 experimental settings. These relatively comprehensive experimental results demonstrate its robustness and superiorities.
We propose a new batch mode active learning algorithm designed for neural networks and large query batch sizes. The method, Discriminative Active Learning (DAL), poses active learning as a binary classification task, attempting to choose examples to label in such a way as to make the labeled set and the unlabeled pool indistinguishable. Experimenting on image classification tasks, we empirically show our method to be on par with state of the art methods in medium and large query batch sizes, while being simple to implement and also extend to other domains besides classification tasks. Our experiments also show that none of the state of the art methods of today are clearly better than uncertainty sampling when the batch size is relatively large, negating some of the reported results in the recent literature.
Domain Adaptation aiming to learn a transferable feature between different but related domains has been well investigated and has shown excellent empirical performances. Previous works mainly focused on matching the marginal feature distributions usi ng the adversarial training methods while assuming the conditional relations between the source and target domain remained unchanged, $i.e.$, ignoring the conditional shift problem. However, recent works have shown that such a conditional shift problem exists and can hinder the adaptation process. To address this issue, we have to leverage labelled data from the target domain, but collecting labelled data can be quite expensive and time-consuming. To this end, we introduce a discriminative active learning approach for domain adaptation to reduce the efforts of data annotation. Specifically, we propose three-stage active adversarial training of neural networks: invariant feature space learning (first stage), uncertainty and diversity criteria and their trade-off for query strategy (second stage) and re-training with queried target labels (third stage). Empirical comparisons with existing domain adaptation methods using four benchmark datasets demonstrate the effectiveness of the proposed approach.
Graph Neural Networks (GNNs) have recently caught great attention and achieved significant progress in graph-level applications. In this paper, we propose a framework for graph neural networks with multiresolution Haar-like wavelets, or MathNet, with interrelated convolution and pooling strategies. The underlying method takes graphs in different structures as input and assembles consistent graph representations for readout layers, which then accomplishes label prediction. To achieve this, the multiresolution graph representations are first constructed and fed into graph convolutional layers for processing. The hierarchical graph pooling layers are then involved to downsample graph resolution while simultaneously remove redundancy within graph signals. The whole workflow could be formed with a multi-level graph analysis, which not only helps embed the intrinsic topological information of each graph into the GNN, but also supports fast computation of forward and adjoint graph transforms. We show by extensive experiments that the proposed framework obtains notable accuracy gains on graph classification and regression tasks with performance stability. The proposed MathNet outperforms various existing GNN models, especially on big data sets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا