ﻻ يوجد ملخص باللغة العربية
Graph Neural Networks (GNNs) have recently caught great attention and achieved significant progress in graph-level applications. In this paper, we propose a framework for graph neural networks with multiresolution Haar-like wavelets, or MathNet, with interrelated convolution and pooling strategies. The underlying method takes graphs in different structures as input and assembles consistent graph representations for readout layers, which then accomplishes label prediction. To achieve this, the multiresolution graph representations are first constructed and fed into graph convolutional layers for processing. The hierarchical graph pooling layers are then involved to downsample graph resolution while simultaneously remove redundancy within graph signals. The whole workflow could be formed with a multi-level graph analysis, which not only helps embed the intrinsic topological information of each graph into the GNN, but also supports fast computation of forward and adjoint graph transforms. We show by extensive experiments that the proposed framework obtains notable accuracy gains on graph classification and regression tasks with performance stability. The proposed MathNet outperforms various existing GNN models, especially on big data sets.
Efficient and interpretable spatial analysis is crucial in many fields such as geology, sports, and climate science. Tensor latent factor models can describe higher-order correlations for spatial data. However, they are computationally expensive to t
Deep Graph Neural Networks (GNNs) are useful models for graph classification and graph-based regression tasks. In these tasks, graph pooling is a critical ingredient by which GNNs adapt to input graphs of varying size and structure. We propose a new
We present graph wavelet neural network (GWNN), a novel graph convolutional neural network (CNN), leveraging graph wavelet transform to address the shortcomings of previous spectral graph CNN methods that depend on graph Fourier transform. Different
Graph representation learning is a fundamental problem for modeling relational data and benefits a number of downstream applications. Traditional Bayesian-based graph models and recent deep learning based GNN either suffer from impracticability or la
We study $p$-adic multiresolution analyses (MRAs). A complete characterisation of test functions generating MRAs (scaling functions) is given. We prove that only 1-periodic test functions may be taken as orthogonal scaling functions. We also suggest