ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding Negative Sampling in Graph Representation Learning

309   0   0.0 ( 0 )
 نشر من قبل Chang Zhou
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph representation learning has been extensively studied in recent years. Despite its potential in generating continuous embeddings for various networks, both the effectiveness and efficiency to infer high-quality representations toward large corpus of nodes are still challenging. Sampling is a critical point to achieve the performance goals. Prior arts usually focus on sampling positive node pairs, while the strategy for negative sampling is left insufficiently explored. To bridge the gap, we systematically analyze the role of negative sampling from the perspectives of both objective and risk, theoretically demonstrating that negative sampling is as important as positive sampling in determining the optimization objective and the resulted variance. To the best of our knowledge, we are the first to derive the theory and quantify that the negative sampling distribution should be positively but sub-linearly correlated to their positive sampling distribution. With the guidance of the theory, we propose MCNS, approximating the positive distribution with self-contrast approximation and accelerating negative sampling by Metropolis-Hastings. We evaluate our method on 5 datasets that cover extensive downstream graph learning tasks, including link prediction, node classification and personalized recommendation, on a total of 19 experimental settings. These relatively comprehensive experimental results demonstrate its robustness and superiorities.



قيم البحث

اقرأ أيضاً

Path representations are critical in a variety of transportation applications, such as estimating path ranking in path recommendation systems and estimating path travel time in navigation systems. Existing studies often learn task-specific path repre sentations in a supervised manner, which require a large amount of labeled training data and generalize poorly to other tasks. We propose an unsupervised learning framework Path InfoMax (PIM) to learn generic path representations that work for different downstream tasks. We first propose a curriculum negative sampling method, for each input path, to generate a small amount of negative paths, by following the principles of curriculum learning. Next, emph{PIM} employs mutual information maximization to learn path representations from both a global and a local view. In the global view, PIM distinguishes the representations of the input paths from those of the negative paths. In the local view, emph{PIM} distinguishes the input path representations from the representations of the nodes that appear only in the negative paths. This enables the learned path representations to encode both global and local information at different scales. Extensive experiments on two downstream tasks, ranking score estimation and travel time estimation, using two road network datasets suggest that PIM significantly outperforms other unsupervised methods and is also able to be used as a pre-training method to enhance supervised path representation learning.
Recent methods for learning unsupervised visual representations, dubbed contrastive learning, optimize the noise-contrastive estimation (NCE) bound on mutual information between two views of an image. NCE uses randomly sampled negative examples to no rmalize the objective. In this paper, we show that choosing difficult negatives, or those more similar to the current instance, can yield stronger representations. To do this, we introduce a family of mutual information estimators that sample negatives conditionally -- in a ring around each positive. We prove that these estimators lower-bound mutual information, with higher bias but lower variance than NCE. Experimentally, we find our approach, applied on top of existing models (IR, CMC, and MoCo) improves accuracy by 2-5% points in each case, measured by linear evaluation on four standard image datasets. Moreover, we find continued benefits when transferring features to a variety of new image distributions from the Meta-Dataset collection and to a variety of downstream tasks such as object detection, instance segmentation, and keypoint detection.
To take full advantage of fast-growing unlabeled networked data, this paper introduces a novel self-supervised strategy for graph representation learning by exploiting natural supervision provided by the data itself. Inspired by human social behavior , we assume that the global context of each node is composed of all nodes in the graph since two arbitrary entities in a connected network could interact with each other via paths of varying length. Based on this, we investigate whether the global context can be a source of free and effective supervisory signals for learning useful node representations. Specifically, we randomly select pairs of nodes in a graph and train a well-designed neural net to predict the contextual position of one node relative to the other. Our underlying hypothesis is that the representations learned from such within-graph context would capture the global topology of the graph and finely characterize the similarity and differentiation between nodes, which is conducive to various downstream learning tasks. Extensive benchmark experiments including node classification, clustering, and link prediction demonstrate that our approach outperforms many state-of-the-art unsupervised methods and sometimes even exceeds the performance of supervised counterparts.
Graph representation learning is a fundamental problem for modeling relational data and benefits a number of downstream applications. Traditional Bayesian-based graph models and recent deep learning based GNN either suffer from impracticability or la ck interpretability, thus combined models for undirected graphs have been proposed to overcome the weaknesses. As a large portion of real-world graphs are directed graphs (of which undirected graphs are special cases), in this paper, we propose a Deep Latent Space Model (DLSM) for directed graphs to incorporate the traditional latent variable based generative model into deep learning frameworks. Our proposed model consists of a graph convolutional network (GCN) encoder and a stochastic decoder, which are layer-wise connected by a hierarchical variational auto-encoder architecture. By specifically modeling the degree heterogeneity using node random factors, our model possesses better interpretability in both community structure and degree heterogeneity. For fast inference, the stochastic gradient variational Bayes (SGVB) is adopted using a non-iterative recognition model, which is much more scalable than traditional MCMC-based methods. The experiments on real-world datasets show that the proposed model achieves the state-of-the-art performances on both link prediction and community detection tasks while learning interpretable node embeddings. The source code is available at https://github.com/upperr/DLSM.
99 - Shupeng Gui 2018
Graph embedding is a central problem in social network analysis and many other applications, aiming to learn the vector representation for each node. While most existing approaches need to specify the neighborhood and the dependence form to the neigh borhood, which may significantly degrades the flexibility of representation, we propose a novel graph node embedding method (namely GESF) via the set function technique. Our method can 1) learn an arbitrary form of representation function from neighborhood, 2) automatically decide the significance of neighbors at different distances, and 3) be applied to heterogeneous graph embedding, which may contain multiple types of nodes. Theoretical guarantee for the representation capability of our method has been proved for general homogeneous and heterogeneous graphs and evaluation results on benchmark data sets show that the proposed GESF outperforms the state-of-the-art approaches on producing node vectors for classification tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا