ترغب بنشر مسار تعليمي؟ اضغط هنا

A Deep Latent Space Model for Graph Representation Learning

197   0   0.0 ( 0 )
 نشر من قبل Hanxuan Yang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph representation learning is a fundamental problem for modeling relational data and benefits a number of downstream applications. Traditional Bayesian-based graph models and recent deep learning based GNN either suffer from impracticability or lack interpretability, thus combined models for undirected graphs have been proposed to overcome the weaknesses. As a large portion of real-world graphs are directed graphs (of which undirected graphs are special cases), in this paper, we propose a Deep Latent Space Model (DLSM) for directed graphs to incorporate the traditional latent variable based generative model into deep learning frameworks. Our proposed model consists of a graph convolutional network (GCN) encoder and a stochastic decoder, which are layer-wise connected by a hierarchical variational auto-encoder architecture. By specifically modeling the degree heterogeneity using node random factors, our model possesses better interpretability in both community structure and degree heterogeneity. For fast inference, the stochastic gradient variational Bayes (SGVB) is adopted using a non-iterative recognition model, which is much more scalable than traditional MCMC-based methods. The experiments on real-world datasets show that the proposed model achieves the state-of-the-art performances on both link prediction and community detection tasks while learning interpretable node embeddings. The source code is available at https://github.com/upperr/DLSM.



قيم البحث

اقرأ أيضاً

We seek to learn a representation on a large annotated data source that generalizes to a target domain using limited new supervision. Many prior approaches to this problem have focused on learning disentangled representations so that as individual fa ctors vary in a new domain, only a portion of the representation need be updated. In this work, we seek the generalization power of disentangled representations, but relax the requirement of explicit latent disentanglement and instead encourage linearity of individual factors of variation by requiring them to be manipulable by learned linear transformations. We dub these transformations latent canonicalizers, as they aim to modify the value of a factor to a pre-determined (but arbitrary) canonical value (e.g., recoloring the image foreground to black). Assuming a source domain with access to meta-labels specifying the factors of variation within an image, we demonstrate experimentally that our method helps reduce the number of observations needed to generalize to a similar target domain when compared to a number of supervised baselines.
Humans are able to create rich representations of their external reality. Their internal representations allow for cross-modality inference, where available perceptions can induce the perceptual experience of missing input modalities. In this paper, we contribute the Multimodal Hierarchical Variational Auto-encoder (MHVAE), a hierarchical multimodal generative model for representation learning. Inspired by human cognitive models, the MHVAE is able to learn modality-specific distributions, of an arbitrary number of modalities, and a joint-modality distribution, responsible for cross-modality inference. We formally derive the models evidence lower bound and propose a novel methodology to approximate the joint-modality posterior based on modality-specific representation dropout. We evaluate the MHVAE on standard multimodal datasets. Our model performs on par with other state-of-the-art generative models regarding joint-modality reconstruction from arbitrary input modalities and cross-modality inference.
99 - Shupeng Gui 2018
Graph embedding is a central problem in social network analysis and many other applications, aiming to learn the vector representation for each node. While most existing approaches need to specify the neighborhood and the dependence form to the neigh borhood, which may significantly degrades the flexibility of representation, we propose a novel graph node embedding method (namely GESF) via the set function technique. Our method can 1) learn an arbitrary form of representation function from neighborhood, 2) automatically decide the significance of neighbors at different distances, and 3) be applied to heterogeneous graph embedding, which may contain multiple types of nodes. Theoretical guarantee for the representation capability of our method has been proved for general homogeneous and heterogeneous graphs and evaluation results on benchmark data sets show that the proposed GESF outperforms the state-of-the-art approaches on producing node vectors for classification tasks.
In many domains where data are represented as graphs, learning a similarity metric among graphs is considered a key problem, which can further facilitate various learning tasks, such as classification, clustering, and similarity search. Recently, the re has been an increasing interest in deep graph similarity learning, where the key idea is to learn a deep learning model that maps input graphs to a target space such that the distance in the target space approximates the structural distance in the input space. Here, we provide a comprehensive review of the existing literature of deep graph similarity learning. We propose a systematic taxonomy for the methods and applications. Finally, we discuss the challenges and future directions for this problem.
Knowledge graph (KG) completion aims to fill the missing facts in a KG, where a fact is represented as a triple in the form of $(subject, relation, object)$. Current KG completion models compel two-thirds of a triple provided (e.g., $subject$ and $re lation$) to predict the remaining one. In this paper, we propose a new model, which uses a KG-specific multi-layer recurrent neural network (RNN) to model triples in a KG as sequences. It outperformed several state-of-the-art KG completion models on the conventional entity prediction task for many evaluation metrics, based on two benchmark datasets and a more difficult dataset. Furthermore, our model is enabled by the sequential characteristic and thus capable of predicting the whole triples only given one entity. Our experiments demonstrated that our model achieved promising performance on this new triple prediction task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا