المفارقة والكشف عن المعنويات مهمة لفهم سلوك الناس وأفكار الناس.وبالتالي أصبحت مهمة شعبية في معالجة اللغة الطبيعية (NLP).هذه الورقة تقدم النتائج والنتائج الرئيسية في المهام المشتركة WANLP 2021 واحدة واثنين.استندت المهمة إلى DataSet Arsarcasm-V2 (أبو ف
رحة وآخرون، 2021).في هذه الورقة، نحن نصف نظامنا متعدد الرؤوس LSTM-CNN-GRU وكذلك ماربرت (عبد المجيد وآخرون، 2021) مقدم لهذه المهمة المشتركة، المرتبة 10 من أصل 27 في مهمة مشتركة تحقيق واحد 0.5662 F1-Sarcasmوتحتل المرتبة 3 من 22 في المهمة المشتركة اثنين من تحقيق 0.7321 F1-PN تحت اسم مستخدم Codalab Rematchka ''.لقد جربنا نماذج مختلفة، وهناك نماذج أفضل أداء هي مجموعة من cnn-lstm متعددة برأسنا، حيث استخدمنا نص prepossessed و emoji المقدمة من تغريدات وماربرت.
السخرية هي واحدة من التحديات الرئيسية لأنظمة تحليل المعنويات بسبب استخدام الصياغة غير المباشرة الضمنية للتعبير عن الآراء، وخاصة باللغة العربية.تقدم هذه الورقة النظام الذي قدمناه إلى المهمة الكشف عن السخرية والشاحنات الخاصة بمهمة WANLP-2021 القادرة عل
ى التعامل مع كل من المهارات الفرعية.نقوم أولا بإجراء ضبط جيد على نوعين من نماذج اللغة المدربة مسبقا (PLMS) مع استراتيجيات تدريب مختلفة.ثم يتم تطبيق آلية تكديس فعالة على رأس Plms المصنفات الدقيقة للحصول على التنبؤ النهائي.النتائج التجريبية على DataSet Arsarcasm-V2 تظهر فعالية طريقتنا ونحن نحتل المرتبة الثالثة والثانية للحصول على التراكب الفرعي 1 و 2.