ترغب بنشر مسار تعليمي؟ اضغط هنا

نوضح القدرات المعتدلة لنظام روبوت الاستماع اليقظ متعدد الأحزاب عندما يتحدث عدة أشخاص في المنعطفات.نظام الاستماع اليقظي التقليدي الخاص بنا يولد ردود المستمع مثل Backchannels، وكرر، وتفصيل الأسئلة، والتقييمات.في هذه الورقة، فإن ردود الروبوت الإضافية ال تي تحفز مستخدم الاستماع (مشارك جانبي) لتصبح أكثر مشاركة في الحوار.الردود الإضافية تثير التقييمات والأسئلة من المشاركين الجانبي، مما يجعل الحوار أكثر تعاطفا وحيوية.
تم الاستفادة من هذه العضلة في تصميم ذراع روبوت يعمل بشكل مشابه لعضلة العضد و الساعد عند الإنسان, تستطيع جذب اجسام كبيرة بوزن يصل غلى 500 نيوتن, ما يكافئ لاعب كمال أجسام محترف يرفع بيده هذا الوزن.
تعتمد معظم صناعات الروبوت في نقل الحركة فيها على استخدام محركات السيرفو و المحركات الخطية أو محركات التيار المستمر بالإضافة إلى دارات القيادة الخاصة بها مما يزيد الكلفة و يعقد عملية التحكم بالروبوت, تبحث المقالة في استخدام تقانات الهواء المضغوط في بن اء و تصميم جديد لذراع روبوت يستطيع القيام بتنفيذ العديد من المهام باستطاعة أكبر و بتكلفة أقل بكثير من استخدام المؤازرات السابقة و ذلك لاستخدامه للقيام بمهام تحتاج إلى سرعة و استطاعة عالية, و لا تحتاج إلى دقة كبيرة في العمل.
يعتبر تخطيط الحركة من القضايا الهامة و الملحة لما يعطيه للروبوت من قدرة على الوصول إلى الهدف بشكل آلي و منع الاصطدام بأي عائق، مما يرفع من أداء الروبوت و يقلل من كلفته التشغيلية. و يقسم تخطيط حركة الروبوت عادةً إلى قسمين: يقوم الأول بإيجاد المسار الم ناسب و يضمن الثاني تتبع الروبوت لهذا المسار وصولاً لهدفه. يعتمد هذا البحث على التقنيات المستخدمة في أحد أشهر خوارزميات تجنب العوائق (خوارزميات Bug) من أجل إيجاد مسار عام للروبوت. و تطبق تلك المسارات الناتجة على أرض الواقع باستخدام روبوت Boe-Bot تفاضلي القيادة.
تنكب العديد من الأبحاث على دراسة أذرع الروبوتات و التحكم بها و قدرتها على إجراء عمليات الملاحقة وفقاً لنوع المحركات التي تتألف منها سواء محركات التيار المستمر أو المحركات الخطوية. بالإضافة إلى سرعة الاستجابة التي يتمتع بها كل نوع من أنواع هذه المحركا ت وفقاً للتركيب الفيزيائي الخاص به. يتألف الروبوت من مجموعة من الوصلات المصنوعة من مواد صلبة (تمثل أذرع الروبوت) مرتبطة فيما بينها بمجموعة من المحركات (تمثل المفاصل) و المجموع ككل يسمح له بالتحرك في الفراغ وفقا لعدد من درجات الحرية , و الهدف الرئيسي للروبوتات على اختلاف أنواعها العمل في مواقع معينة تشكل خطرا كبيرا على الإنسان (كالإشعاع و الحرارة العالية) أو العمليات التي تتطلب عددا كبيرا من حلقات التكرار. يهدف البحث لدراسة حركة ذراع روبوت عن طريق التحكم بحركة المحركات و استجابتها لملاحقة خط مرسوم اعتماداً على متحكم PID و ذلك للوصول إلى أقصى دقة استجابة للملاحقة عن طريق تعويض محددات الخطأ في رؤية الكاميرا التي يعتمد عليها الروبوت لرؤية الخط إذ أن جميع الكاميرات غير مثالية و تحتاج إلى معايرة calibration مسبقة, حيث تم تعويض هذه المحددات من أجل التحكم بثلاث محركات ضمن المحاور الإحداثية x,y,z.
يشكل تخطيط المسار تحدياً كبيراً أمام إيجاد روبوتات متنقلة ذكية. و يعتبر إيجاد المسار المناسب الخالي من الاصطدامات، و بأقل زمن معالجة و طول مسار ممكن من القضايا البحثية الملّحة حالياً. و تعد طريقة شجرة البحث العشوائي السريعة RRTRapidly exploring rando m trees من أسرع الطرق التي تقوم بإيجاد مسار مناسب للروبوت كما أنها طريقة سهلة حسابياً و يمكن تطبيقها في بيئات متعددة الأبعاد. يستعرض هذا البحث خوارزمية RRT و يقدم تطبيقاً لتخطيط مسار حركة روبوت تفاضلي وفق هذه الخوارزمية في بيئتي عمل مختلفتين باستخدام محاكي الروبوتات V-rep. بيّن هذا البحث قدرة الخوارزمية على إيجاد مسار مناسب خلال زمن معالجة قصير نسبياً، كما أظهر قدرة المحاكي V-rep على نمذجة و محاكاة ثلاثية الأبعاد لحركة الروبوت المتنقل بكفاءة و سلاسة.
اهتم الصناعيون بأتمتة مصانعهم لزيادة الانتاج و خفض التكاليف و تحسين جودة المنتج من خلال استخدام الأذرع الآلية في قيادة و انهاء معظم العمليات الانتاجية، حيث تتصف الأذرع الآلية بأنها هياكل ميكانيكية قابلة للبرمجة لأداء مهام تتميز بالدقة و السرعة و الوث وقية. استند البحث في استنتاج المسار الأمثل على توليد مسارات افتراضية (مثلثية، منحنية، مربعة) تعبر عن حركة الذراع الآلي للوصول إلى نقطة الهدف، حيث تم معرفة زمن الانتقال و زوايا الدوران و العزم في المفاصل تحت تأثير الجاذبية الأرضية من خلال دراسة الحركة الأفقية و الشاقولية للذراع الآلي. تبين حركة الذراع الآلي وفق المسارات المقترحة أن أفضل المسارات سلامة على محركات الذراع الآلي هو المسار النصف دائري كونه يحد من حدوث صدمات ميكانيكية أو ظهور قيم مرتفعة للعزوم عند المفاصل. في حين تبين ان المسار الذي يحقق أقل زمن للوصول الى نقطة الهدف و بالتالي اقل كمية في الطاقة المستهلة هو المسار المثلثي في حالة الحركة الافقية للذراع على الرغم من ظهور انحرافات حادة في مخططات العزم و الطاقة نتيجة التغير المفاجئ في اتجاه الحركة. يظهر التأثير السلبي للجاذبية الأرضية خصوصا عند حركة المفصل الثاني للأعلى أو الأسفل, مما يسبب بظهور قمم في منحني الطاقة تعبر عن قيم مرتفعة للعزم في هذا المفصل.
درست في البحث الآليات اللازمة لجعل عربة روبوتية تقوم بملاحقة مسار محدد مسبقاً كي تسير عليه بحيث تتمكن تلك العربة من سلوك ذلك المسار و العودة إليه في حال انحرفت عنه في أثناء حركتها. و قد استخدمت في البحث الخوارزميات الآتية لملاحقة المسار: 1- خوارزمية ملاحقة الجزرة 2- خوارزمية الملاحقة الصافية 3- خوارزمية ملاحقة الماضي و قد استخدم برنامج التحليل الإحصائي (MATLAB) لعمل محاكي لحركة العربة الروبوتية التي تستخدم تلك الخوارزميات. و قد وجدنا نتيجة للدراسة أن خوارزمية ملاحقة الجزرة تتميز ببساطتها في الفهم و التطبيق، إلا أنها تؤدي إلى أخطاء أكبر في الموقع و انحراف أكبر عن المسار، و من مشكلاتها أيضاً أنها تؤدي إلى ميل العربة إلى أخذ الاختصارات إِذ تسير العربة متوجهة مباشرةً إلى النقطة الهدف بدلاً من سلوك انحناءات المسار. و تعاني خوارزمية الملاحقة الصافية من المشكلات نفسها و لكن على نحو أقل حدية، في حين أن خوارزمية ملاحقة الماضي تقوم بملاحقة مثالية للمسار؛ و ذلك من أجل شروط و معاملات دراسة محددة.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا