ترغب بنشر مسار تعليمي؟ اضغط هنا

We show nonlocal spin transport in n-Ge based lateral spin-valve devices with highly ordered Co_2FeSi/n^+-Ge Schottky tunnel contacts. Clear spin-valve signals and Hanle-effect curves are demonstrated at low temperatures, indicating generation, manip ulation, and detection of pure spin currents in n-Ge. The obtained spin generation efficiency of ~ 0.12 is about two orders of magnitude larger than that for a device with Fe/MgO tunnel-barrier contacts reported previously. Taking the spin related behavior with temperature evolution into account, we infer that it is necessary to simultaneously demonstrate the high spin generation efficiency and improve the quality of the transport channel for achieving Ge based spintronic devices.
210 - K. Tanikawa , S. Oki , S. Yamada 2013
Using low-temperature molecular beam epitaxy, we study substitutions of Fe atoms for Co ones in Co_3-xFe_xSi Heusler-compound films grown on Si and Ge. Even for the low-temperature grown Heusler-compound films, the Co-Fe atomic substitution at A and C sites can be confirmed by the conversion electron Mossbauer spectroscopy measurements. As a result, the magnetic moment and room-temperature spin polarization estimated by nonlocal spin-valve measurements are systematically changed with the Co-Fe substitutions. This study experimentally verified that the Co-Fe substitution in Co_3-xFe_xSi Heusler compounds can directly affect the room-temperature spin polarization.
146 - K. Hamaya , Y. Ando , K. Masaki 2012
Using a metal-oxide-semiconductor field effect transistor (MOSFET) structure with a high-quality CoFe/n^+Si contact, we systematically study spin injection and spin accumulation in a nondegenerated Si channel with a doping density of ~ 4.5*10^15cm^-3 at room temperature. By applying the gate voltage (V_G) to the channel, we obtain sufficient bias currents (I_Bias) for creating spin accumulation in the channel and observe clear spin-accumulation signals even at room temperature. Whereas the magnitude of the spin signals is enhanced by increasing I_Bias, it is reduced by increasing V_G interestingly. These features can be understood within the framework of the conventional spin diffusion model. As a result, a room-temperature spin injection technique for the nondegenerated Si channel without using insulating tunnel barriers is established, which indicates a technological progress for Si-based spintronic applications with gate electrodes.
241 - S. Yamada , K. Tanikawa , M. Miyao 2012
We demonstrate high-quality epitaxial germanium (Ge) films on a metallic silicide, Fe3Si, grown directly on a Ge(111) substrate. Using molecular beam epitaxy techniques, we can obtain an artificially controlled arrangement of silicon (Si) or iron (Fe ) atoms at the surface on Fe3Si(111). The Si-terminated Fe3Si(111) surface enables us to grow two-dimensional epitaxial Ge films, whereas the Fe-terminated one causes the three-dimensional epitaxial growth of Ge films. The high-quality Ge grown on the Si-terminated surface has almost no strain, meaning that the Ge films are not grown on the low-temperature-grown Si buffer layer but on the lattice matched metallic Fe3Si. This study will open a new way for vertical-type Ge-channel transistors with metallic source/drain contacts.
168 - Y. Ando , S. Yamada , K. Kasahara 2012
We experimentally show evidence for the presence of spin accumulation in localized states at ferromagnet-silicon interfaces, detected by electrical Hanle effect measurements in CoFe/$n^{+}$-Si/$n$-Si lateral devices. By controlling the measurement te mperature, we can clearly observe marked changes in the spin-accumulation signals at low temperatures, at which the electron transport across the interface changes from the direct tunneling to the two-step one via the localized states. We discuss in detail the difference in the spin accumulation between in the Si channel and in the localized states.
112 - Y. Ando , K. Kasahara , S. Yamada 2012
We study temperature evolution of spin accumulation signals obtained by the three-terminal Hanle effect measurements in a nondegenerated silicon channel with a Schottky-tunnel-barrier contact. We find the clear difference in the temperature-dependent spin signals between spin-extraction and spin-injection conditions. In a spin-injection condition with a low bias current, the magnitude of spin signals can be enhanced despite the rise of temperature. For the interpretation of the temperature-dependent spin signals, it is important to consider the sensitivity of the spin detection at the Schottky-tunnel-barrier contact in addition to the spin diffusion in Si.
54 - K. Hamaya , N. Hashimoto , S. Oki 2011
We study room-temperature generation and detection of pure spin currents using lateral spin-valve devices with Heusler-compound electrodes, Co$_{2}$FeSi (CFS) or Fe$_{3}$Si (FS). The magnitude of the nonlocal spin-valve (NLSV) signals is seriously af fected by the dispersion of the resistivity peculiarly observed in the low-temperature grown Heusler compounds with ordered structures. From the analysis based on the one-dimensional spin diffusion model, we find that the spin polarization monotonically increases with decreasing the resistivity, which depends on the structural ordering, for both CFS and FS electrodes, and verify that CFS has relatively large spin polarization compared with FS.
79 - Y. Ando , Y. Maeda , K. Kasahara 2011
We demonstrate spin-accumulation signals controlled by the gate voltage in a metal-oxide-semiconductor field effect transistor structure with a Si channel and a CoFe/$n^{+}$-Si contact at room temperature. Under the application of a back-gate voltage , we clearly observe the three-terminal Hanle-effect signal, i.e., spin-accumulation signal. The magnitude of the spin-accumulation signals can be reduced with increasing the gate voltage. We consider that the gate controlled spin signals are attributed to the change in the carrier density in the Si channel beneath the CoFe/$n^{+}$-Si contact. This study is not only a technological jump for Si-based spintronic applications with gate structures but also reliable evidence for the spin injection into the semiconducting Si channel at room temperature.
The physical origin of Fermi level pinning (FLP) at metal/Ge interfaces has been argued over a long period. Using the Fe$_{3}$Si/Ge(111) heterostructure developed originally, we can explore electrical transport properties through atomically matched m etal/Ge junctions. Unlike the conventional metal/$p$-Ge junctions reported so far, we clearly observe rectifying current-voltage characteristics with a measurable Schottky barrier height, depending on the contact area of the Fe$_{3}$Si/Ge(111) junction. These results indicate that one should distinguish between intrinsic and extrinsic mechanisms for discussing the formation of the Schottky barrier at metal/Ge interfaces. This study will be developed for understanding FLP for almost all the metal/semiconductor interfaces.
96 - S. Yamada , K. Yamamoto , K. Ueda 2009
For electrical spin injection and detection of spin-polarized electrons in silicon, we explore highly epitaxial growth of ferromagnetic full-Heusler-alloy Co2FeSi thin films on silicon substrates using low-temperature molecular beam epitaxy (LTMBE). Although in-situ reflection high energy electron diffraction images clearly show two-dimensional epitaxial growth for growth temperatures T_G of 60, 130, and 200 C, cross-sectional transmission electron microscopy experiments reveal that there are single-crystal phases other than Heusler alloys near the interface between Co_2FeSi and Si for T_G = 130 and 200 C. On the other hand, almost perfect heterointerfaces are achieved for T_G = 60 C. These results and magnetic measurements indicate that highly epitaxial growth of Co_2FeSi thin films on Si is demonstrated only for T_G = 60 C.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا