ﻻ يوجد ملخص باللغة العربية
Using a metal-oxide-semiconductor field effect transistor (MOSFET) structure with a high-quality CoFe/n^+Si contact, we systematically study spin injection and spin accumulation in a nondegenerated Si channel with a doping density of ~ 4.5*10^15cm^-3 at room temperature. By applying the gate voltage (V_G) to the channel, we obtain sufficient bias currents (I_Bias) for creating spin accumulation in the channel and observe clear spin-accumulation signals even at room temperature. Whereas the magnitude of the spin signals is enhanced by increasing I_Bias, it is reduced by increasing V_G interestingly. These features can be understood within the framework of the conventional spin diffusion model. As a result, a room-temperature spin injection technique for the nondegenerated Si channel without using insulating tunnel barriers is established, which indicates a technological progress for Si-based spintronic applications with gate electrodes.
Spin transport in non-degenerate semiconductors is expected to pave a way to the creation of spin transistors, spin logic devices and reconfigurable logic circuits, because room temperature (RT) spin transport in Si has already been achieved. However
We inject spin-polarized electrons from an Fe/MgO tunnel barrier contact into n-type Ge(001) substrates with electron densities 2e16 < n < 8e17 cm-3, and electrically detect the resulting spin accumulation using three-terminal Hanle measurements. We
We report direct experimental evidence of room temperature spin filtering in magnetic tunnel junctions (MTJs) containing CoFe2O4 tunnel barriers via tunneling magnetoresistance (TMR) measurements. Pt(111)/CoFe2O4(111)/gamma-Al2O3(111)/Co(0001) fully
We describe a new means for electrically creating spin polarization in semiconductors. In contrast to spin injection of electrons by tunneling through a reverse-biased Schottky barrier, we observe spin accumulation at the metal/semiconductor interfac
We demonstrate spin-accumulation signals controlled by the gate voltage in a metal-oxide-semiconductor field effect transistor structure with a Si channel and a CoFe/$n^{+}$-Si contact at room temperature. Under the application of a back-gate voltage