ترغب بنشر مسار تعليمي؟ اضغط هنا

Large enhancement in the generation efficiency of pure spin currents in Ge using Heusler-compound Co_2FeSi electrodes

63   0   0.0 ( 0 )
 نشر من قبل Kohei Hamaya
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show nonlocal spin transport in n-Ge based lateral spin-valve devices with highly ordered Co_2FeSi/n^+-Ge Schottky tunnel contacts. Clear spin-valve signals and Hanle-effect curves are demonstrated at low temperatures, indicating generation, manipulation, and detection of pure spin currents in n-Ge. The obtained spin generation efficiency of ~ 0.12 is about two orders of magnitude larger than that for a device with Fe/MgO tunnel-barrier contacts reported previously. Taking the spin related behavior with temperature evolution into account, we infer that it is necessary to simultaneously demonstrate the high spin generation efficiency and improve the quality of the transport channel for achieving Ge based spintronic devices.

قيم البحث

اقرأ أيضاً

Relating magnetotransport properties to specific spin textures at surfaces or interfaces is an intense field of research nowadays. Here, we investigate the variation of the electrical resistance of Ge(111) grown epitaxially on semi-insulating Si(111) under the application of an external magnetic field. We find a magnetoresistance term which is linear in current density j and magnetic field B, hence odd in j and B, corresponding to a unidirectional magnetoresistance. At 15 K, for I = 10 $mu$A (or j = 0.33 A/m) and B = 1 T, it represents 0.5 % of the zero field resistance, a much higher value compared to previous reports on unidirectional magnetoresistance. We ascribe the origin of this magnetoresistance to the interplay between the externally applied magnetic field and the current-induced pseudo-magnetic field in the spin-splitted subsurface states of Ge(111). This unidirectional magnetoresistance is independent of the current direction with respect to the Ge crystal axes. It progressively vanishes, either using a negative gate voltage due to carrier activation into the bulk (without spin-splitted bands), or by increasing the temperature due to the Rashba energy splitting of the subsurface states lower than $sim$58 k$_B$. The highly developed technologies on semiconductor platforms would allow the rapid optimization of devices based on this phenomenon.
Spin caloritronics studies the interplay between charge-, heat- and spin-currents, which are initiated by temperature gradients in magnetic nanostructures. A plethora of new phenomena has been discovered that promises, e.g., to make wasted heat in el ectronic devices useable or to provide new read-out mechanisms for information. However, only few materials have been studied so far with Seebeck voltages of only some {mu}V, which hampers applications. Here, we demonstrate that half-metallic Heusler compounds are hot candidates for enhancing spin-dependent thermoelectric effects. This becomes evident when considering the asymmetry of the spin-split density of electronic states around the Fermi level that determines the spin-dependent thermoelectric transport in magnetic tunnel junctions. We identify Co$_2$FeAl and Co$_2$FeSi Heusler compounds as ideal due to their energy gaps in the minority density of states, and demonstrate devices with substantially larger Seebeck voltages and tunnel magneto-Seebeck effect ratios than the commonly used Co-Fe-B based junctions.
206 - Weiwei Lin , C. L. Chien 2018
Evidences of pure spin current are indistinguishable from those of many parasitic effects. Proper choices of materials and methods are essential for exploring pure spin current phenomena and devices.
Though Weyl fermions have recently been observed in several materials with broken inversion symmetry, there are very few examples of such systems with broken time reversal symmetry. Various Co$_{2}$-based half-metallic ferromagnetic Heusler compounds are lately predicted to host Weyl type excitations in their band structure. These magnetic Heusler compounds with broken time reversal symmetry are expected to show a large momentum space Berry curvature, which introduces several exotic magneto-transport properties. In this report, we present systematic analysis of experimental results on anomalous Hall effect (AHE) in Co$_2$Ti$X$ ($X$=Si and Ge). This study is an attempt to understand the role of Berry curvature on AHE in Co$_2$Ti$X$ family of materials. The anomalous Hall resistivity is observed to scale quadratically with the longitudinal resistivity for both the compounds. The detailed analysis indicates that in anomalous Hall conductivity, the intrinsic Karplus-Luttinger Berry phase mechanism dominates over the extrinsic skew scattering and side-jump mechanism.
We report the current-perpendicular-to-plane giant magnetoresistance of a spin valve with Co2MnSi (CMS) Heusler alloy ferromagnetic electrodes. A multilayer stack of Cr/Ag/Cr/CMS/Cu/CMS/Fe25Co75/Ir28Mn72/Ru was deposited on a MgO (001) single crystal substrate. The bottom CMS layer was epitaxially grown on the Cr/Ag/Cr buffer layers and was ordered to the L21 structure after annealing at 673 K. The upper CMS layer was found to grow epitaxially on the Cu spacer layer despite the large lattice mismatch between Cu and CMS. The highest MR ratios of 8.6% and 30.7% for CPP-GMR were recorded at room temperature and 6 K, respectively. The high spin polarization of the epitaxial CMS layers is the most likely origin of the high MR ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا