ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of mechanical fatigue on structural performances of gold devices is investigated. The pull-in voltage of special testing micro-systems is monitored during the cyclical load application. The mechanical collapse is identified as a dramatic l oss of mechanical strength of the specimen. The fatigue limit is estimated through the stair-case method by means of the pull-in voltage measurements. Measurements are performed by means of the optical interferometric technique.
A novel open waveguide cavity resonator is presented for the combined variable frequency microwave curing of bumps, underfills and encapsulants, as well as the alignment of devices for fast flip-chip assembly, direct chip attach (DCA) or wafer-scale level packaging (WSLP). This technology achieves radio frequency (RF) curing of adhesives used in microelectronics, optoelectronics and medical devices with potential simultaneous micron-scale alignment accuracy and bonding of devices. In principle, the open oven cavity can be fitted directly onto a flip-chip or wafer scale bonder and, as such, will allow for the bonding of devices through localised heating thus reducing the risk to thermally sensitive devices. Variable frequency microwave (VFM) heating and curing of an idealised polymer load is numerically simulated using a multi-physics approach. Electro-magnetic fields within a novel open ended microwave oven developed for use in micro-electronics manufacturing applications are solved using a de icated Yee scheme finite-difference time-domain (FDTD) solver. Temperature distribution, degree of cure and thermal stresses are analysed using an Unstructured Finite Volume method (UFVM) multi-physics package. The polymer load was meshed for thermophysical analysis, whilst the microwave cavity - encompassing the polymer load - was meshed for microwave irradiation. The two solution domains are linked using a cross-mapping routine. The principle of heating using the evanescent fringing fields within the open-end of the cavity is demonstrated. A closed loop feedback routine is established allowing the temperature within a lossy sample to be controlled. A distribution of the temperature within the lossy sample is obtained by using a thermal imaging camera.
100 - C. Seguineau , M. Ignat 2008
This study is focused on the mechanical characterization of materials used in microelectronic and micro- electromechanical systems (MEMS) devices. In order to determine their mechanical parameters, a new deformation bench test with suitable micromach ined specimens have been developed. Uniaxial tensile tests were performed on low cost specimens, consisting in electroplated thin copper films and structures, deposited on a polimide type substrate. Moreover, a cyclic mechanical actuation via piezoelectric actuators was tested on the same deformation bench. These experiments validate the device for performing dynamic characterization of materials, and reliability studies of different microstructures.
The rapid incursion of new technologies such as MEMS and smart sensor device manufacturing requires new tailor-made packaging designs. In many applications these devices are exposed to humid environments. Since the penetration of moisture into the pa ckage may result in internal corrosion or shift of the operating parameters, the reliability testing of hermetically sealed packages has become a crucial question in the semiconductor industry.
The past few years have seen an increasing focus on energy harvesting issue, including power supply for portable electric devices. Utilize scavenging ambient energy from the environment could eliminate the need for batteries and increase portable dev ice lifetimes indefinitely. In addition, through MEMS technology fabricated micro-generator could easy integrate with these small or portable devices. Several different ambient sources, including solar, vibration and temperature effect, have already exploited [1-3]. Each energy source should be used in suitable environment, therefore to produce maximum efficiency. In this paper, we present an acoustic wave actuated micro-generator for power system by using the energy of acoustic waves, such as the sound from human voices or speakerphone, to actuate a MEMS-type electromagnetic transducer. This provides a longer device lifetime and greater power system convenience. Moreover, it is convenient to integrate MEMS-based microgenerators with small or porta le devices
A PEM micro fuel cell system is described which is based on self-breathing PEM micro fuel cells in the power range between 1 mW and 1W. Hydrogen is supplied with on-demand hydrogen production with help of a galvanic cell, that produces hydrogen when Zn reacts with water. The system can be used as a battery replacement for low power applications and has the potential to improve the run time of autonomous systems. The efficiency has been investigated as function of fuel cell construction and tested for several load profiles.
109 - Patrick Sangouard 2008
This work relates to a novel piezoelectric transformer to be used in an autonomous sensor unit, possibly in conjunction with a RF-MEMS retro-modulator.
106 - E. Schwyter , W. Glatz , L. Durrer 2008
We present and discuss the fabrication process and the performance of a flexible micro thermoelectric generator with electroplated Bi2Te3 thermocouples in a SU-8 mold. Demonstrator devices generate 278uWcm-2 at dTmeas=40K across the experimental set up. Based on model calculations, a temperature difference of dTG=21.4K across the generator is assumed. Due to the flexible design and the chosen generator materials, the performance stays high even for curved contact surfaces. The measurement results correlate well with the model based design optimization predictions.
The present study presents a new micro electromagnetic actuator utilizing a PDMS membrane with a magnet. The actuator is integrated with micro coils to electromagnetically actuate the membrane and results in a large deflection. The micro electromagne tic actuator proposed in this study is easily fabricated and is readily integrated with existing bio-medical chips due to its planar structure.
This paper presents a new electrostatic MEMS (MicroElectroMechanical System) based on a single high reliability totally free flexible membrane. Using four electrodes, this structure enables four states which allowed large deflections (4$mu$m) with lo w actuation voltage (7,5V). This design presents also a good contact force and improve the restoring force of the structure. As an example of application, a Single Pole Double Throw (SPDT) for 24GHz applications, based on this design, has been simulated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا