ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a short rollercoaster cosmology based on two stages of monodromy inflation separated by a stage of matter domination, generated after the early inflaton falls out of slow roll. If the first stage is controlled by a flat potential, $V sim phi^p$ with $p < 1$ and lasts ${cal N} sim 30 - 40$ efolds, the scalar and tensor perturbations at the largest scales will fit the CMB perfectly, and produce relic gravity waves with $0.02 lesssim r lesssim 0.06$, which can be tested by LiteBIRD and CMB-S4 experiments. If in addition the first inflaton is strongly coupled to a hidden sector $U(1)$, there will be an enhanced production of vector fluctuations near the end of the first stage of inflation. These modes convert rapidly to tensors during the short epoch of matter domination, and then get pushed to superhorizon scales by the second stage of inflation, lasting another $20-30$ efolds. This band of gravity waves is chiral, arrives today with wavelengths in the range of $10^8$ km, and with amplitudes greatly enhanced compared to the long wavelength CMB modes by vector sources. It is therefore accessible to LISA. Thus our model presents a rare early universe theory predicting several simultaneous signals testable by a broad range of gravity wave searches in the very near future.
We present a vast landscape of O3/O7 orientifolds that descends from the famous set of complete intersection Calabi-Yau threefolds (CICY). We give distributions of topological data relevant for phenomenology such as the orientifold-odd Hodge numbers, the D3-tadpole, and multiplicities of O3 and O7-planes. Somewhat surprisingly, almost all of these orientifolds have conifold singularities whose deformation branches are projected out by the orientifolding. However, they can be resolved, so most of the orientifolds actually descend from a much larger and possibly new set of CY threefolds that can be reached from the CICYs via conifold transitions. We observe an interesting class of $mathcal{N}=1$ geometric transitions involving colliding O-planes. Finally, as an application, we use our dataset to produce examples of orientifolds that satisfy the topological requirements for the existence of ultra-light throat axions (textit{thraxions}) as proposed in cite{Hebecker:2018yxs}. The database can be accessed at https://www.desy.de/~westphal/orientifold_webpage/cicy_orientifolds.html
We study string inspired two-field models of large-field inflation based on axion monodromy in the presence of an interacting heavier modulus. This class of models has enough structure to approximate at least part of the backreaction effects known in full string theory, such as kinetic mixing with the axion, and flattening of the scalar potential. Yet, it is simple enough to fully describe the structure of higher-point curvature perturbation interactions driven by the adjusting modulus backreaction dynamics. We find that the presence of the heavy modulus can be described via two equivalent effective field theories, both of which can incorporate reductions of the speed of sound. Hence, the presence of heavier moduli in axion monodromy inflation constructions will necessarily generate some amount of non-Gaussianity accompanied by changes to $n_s$ and $r$ beyond what results from just from the well known adiabatic flattening backreaction.
The Higgs could couple to a topological 4-form sector which yields a complex vacuum structure. In general such couplings could lead to direct CP violation in the Higgs sector. In many of the Higgs vacua electroweak symmetry is unbroken. In just as ma ny it breaks when the 4-form flux is large enough. For a fixed value of flux, the symmetry breaking vacua have a smaller vacuum energy than the symmetric ones, where the difference is quantized because it is set by the $4$-form flux. This leads to the possibility that there is a value of the 4-form flux for any UV contributions to the Higgs {it vev} that automatically cancels it down to the right value, $sim$ TeV, if the 4-form charges are quantized in the units of the electroweak scale. This would still leave the cosmological constant which could be selected anthropically.
In the first part of this note we argue that ten dimensional consistency requirements in the form of a certain tadpole cancellation condition can be satisfied by KKLT type vacua of type IIB string theory. We explain that a new term of non-local natur e is generated dynamically once supersymmetry is broken and ensures cancellation of the tadpole. It can be interpreted as the stress caused by the restoring force that the stabilization mechanism exerts on the volume modulus. In the second part, we explain that it is surprisingly difficult to engineer sufficiently long warped throats to prevent decompactification which are also small enough in size to fit into the bulk Calabi-Yau (CY). We give arguments that achieving this with reasonable amount of control may not be possible in generic CY compactifications while CYs with very non-generic geometrical properties might evade our conclusion.
In this work we propose a statistical approach to handling sources of theoretical uncertainty in string theory models of inflation. By viewing a model of inflation as a probabilistic graph, we show that there is an inevitable information bottleneck b etween the ultraviolet input of the theory and observables, as a simple consequence of the data processing theorem. This information bottleneck can result in strong hierarchies in the sensitivity of observables to the parameters of the underlying model and hence universal predictions with respect to at least some microphysical considerations. We also find other intriguing behaviour, such as sharp transitions in the predictions when certain hyperparameters cross a critical value. We develop a robust numerical approach to studying these behaviours by adapting methods often seen in the context of machine learning. We first test our approach by applying it to well known examples of universality, sharp transitions, and concentration phenomena in random matrix theory. We then apply the method to inflation with axion monodromy. We find universality with respect to a number of model parameters and that consistency with observational constraints implies that with very high probability certain perturbative corrections are non-negligible.
In this note we outline the arguments against the ten-dimensional consistency of the simplest types of KKLT de Sitter vacua, as given in arXiv:1707.08678. We comment on parametrization proposals within four-dimensional supergravity and express our di sagreement with the recent criticism by the authors of arXiv:1808.09428.
Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field-range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axion-like shift symmetry keeps the inflaton potential flat (up to non-perturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall-regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter $epsilon$ can be sizable during an early period (relevant for the CMB spectrum). Subsequently, $epsilon$ quickly becomes very small before the tachyonic instability eventually terminates the slow roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While non-observation of tensors by Planck is certainly not a problem, a discovery in the medium to long term future is realistic.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا