ترغب بنشر مسار تعليمي؟ اضغط هنا

Evading the Lyth Bound in Hybrid Natural Inflation

168   0   0.0 ( 0 )
 نشر من قبل Sebastian C. Kraus
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field-range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axion-like shift symmetry keeps the inflaton potential flat (up to non-perturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall-regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter $epsilon$ can be sizable during an early period (relevant for the CMB spectrum). Subsequently, $epsilon$ quickly becomes very small before the tachyonic instability eventually terminates the slow roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While non-observation of tensors by Planck is certainly not a problem, a discovery in the medium to long term future is realistic.



قيم البحث

اقرأ أيضاً

We provide strong evidence for universality of the inflationary field range: given an accurate measurement of $(n_s,r)$, one can infer $Delta phi$ in a model-independent way in the sub-Planckian regime for a range of universality classes of inflation ary models. Both the tensor-to-scalar ratio as well as the spectral tilt are essential for the field range. Given the Planck constraints on $n_s$, the Lyth bound is strengthened by two orders of magnitude: whereas the original bound gives a sub-Planckian field range for $r lesssim 2 cdot 10^{-3}$, we find that $n=0.96$ brings this down to $r lesssim 2 cdot 10^{-5}$.
We discuss the phenomenological implications of hybrid natural inflation models in which the inflaton is a pseudo-Goldstone boson but inflation is terminated by a second scalar field. A feature of the scheme is that the scale of breaking of the Golds tone symmetry can be lower than the Planck scale and so gravitational corrections are under control. We show that, for supersymmetric models, the scale of inflation can be chosen anywhere between the Lyth upper bound and a value close to the electroweak breaking scale. Unlike previous models of low scale inflation the observed density perturbations and spectral index are readily obtained by the choice of the free parameters.
We propose a landscape of many axions, where the axion potential receives various contributions from shift symmetry breaking effects. We show that the existence of the axion with a super-Planckian decay constant is very common in the axion landscape for a wide range of numbers of axions and shift symmetry breaking terms, because of the accidental alignment of axions. The effective inflation model is either natural or multi-natural inflation in the axion landscape, depending on the number of axions and the shift symmetry breaking terms. The tension between BICEP2 and Planck could be due to small modulations to the inflaton potential or steepening of the potential along the heavy axions after the tunneling. The total duration of the slow-roll inflation our universe experienced is not significantly larger than $60$ if the typical height of the axion potentials is of order $(10^{16-17}{rm ,GeV})^4$.
A spontaneously broken global discrete symmetry may have pseudo Goldstone modes associated with the spontaneous breaking of the approximate continuous symmetry of the low dimension terms in the Lagrangian. These provide natural candidates for an infl aton that can generate slow roll inflation. We show that, in the case of a non Abelian discrete symmetry, the pseudo Goldstone modes readily couple to further scalar fields in a manner that the end of inflation is determined by these additional scalar fields, generating hybrid inflation. We give a simple parameterisation of the inflationary potential in this case, determine the inflationary parameters resulting, and show that phenomenological successful inflation is possible while keeping the scale of symmetry breaking sub-Plankian. Unlike natural inflation the inflation scale can be very low. We construct two simple hybrid inflation models, one non supersymmetric and one supersymmetric. In the latter case no parameters need be chosen anomalously small.
We present a mechanism for realizing hybrid inflation using two axion fields with a purely non-perturbatively generated scalar potential. The structure of scalar potential is highly constrained by the discrete shift symmetries of the axions. We show that harmonic hybrid inflation generates observationally viable slow-roll inflation for a wide range of initial conditions. This is possible while accommodating certain UV arguments favoring constraints $flesssim M_{rm P}$ and $Deltaphi_{60}lesssim M_{rm P}$ on the axion periodicity and slow-roll field range, respectively. We discuss controlled $mathbb{Z}_2$-symmetry breaking of the adjacent axion vacua as a means of avoiding cosmological domain wall problems. Including a minimal form of $mathbb{Z}_2$-symmetry breaking into the minimally tuned setup leads to a prediction of primordial tensor modes with the tensor-to-scalar ratio in the range $10^{-4}lesssim r lesssim 0.01$, directly accessible to upcoming CMB observations. Finally, we outline several avenues towards realizing harmonic hybrid inflation in type IIB string theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا