ترغب بنشر مسار تعليمي؟ اضغط هنا

A Goldilocks Higgs

47   0   0.0 ( 0 )
 نشر من قبل Nemanja Kaloper
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Higgs could couple to a topological 4-form sector which yields a complex vacuum structure. In general such couplings could lead to direct CP violation in the Higgs sector. In many of the Higgs vacua electroweak symmetry is unbroken. In just as many it breaks when the 4-form flux is large enough. For a fixed value of flux, the symmetry breaking vacua have a smaller vacuum energy than the symmetric ones, where the difference is quantized because it is set by the $4$-form flux. This leads to the possibility that there is a value of the 4-form flux for any UV contributions to the Higgs {it vev} that automatically cancels it down to the right value, $sim$ TeV, if the 4-form charges are quantized in the units of the electroweak scale. This would still leave the cosmological constant which could be selected anthropically.



قيم البحث

اقرأ أيضاً

We use the Wilsonian functional Renormalisation Group (RG) to study quantum corrections for the Higgs inflationary action including the effect of gravitons, and analyse the leading-order quantum gravitational corrections to the Higgs quartic coupling , as well as its non-minimal coupling to gravity and Newtons constant, at the inflationary regime and beyond. We explain how within this framework the effect of Higgs and graviton loops can be sufficiently suppressed during inflation, and we also place a bound on the corresponding value of the infrared RG cut-off scale during inflation. Finally, we briefly discuss the potential embedding of the model within the scenario of Asymptotic Safety, while all main equations are explicitly presented.
We study high speed collision and reconnection of cosmic strings in the type-II regime (scalar-to-gauge mass ratios larger than one) of the Abelian Higgs model. New phenomena such as multiple reconnections and clustering of small scale structure have been observed and reported in a previous paper, as well as the fact that the previously observed loop that mediates the second intercommutation is only a loop for sufficiently large beta = m_scalar^2/m_gauge^2. Here we give a more detailed account of our study, involving 3D numerical simulations with beta in the range 1 to 64, the largest value simulated to date, as well as 2D simulations of vortex-antivortex (v-av) collisions to understand the possible relation to the new 3D phenomena. Our simulations give further support to the idea that Abelian Higgs strings never pass through each other, unless this is the result of a double reconnection; and that the critical velocity (v_c) for double reconnection goes down with increasing mass ratio, but energy conservation suggests a lower bound around 0.77c. We discuss the qualitative change in the intermediate state observed for large mass ratios. We relate it to a similar change in the outcome of 2D v-av collisions in the form of radiating bound states. In the deep type-II regime the angular dependence of v_c for double reconnection does not seem to conform to semi-analytic predictions based on the Nambu-Goto approximation. We model the high angle collisions reasonably well by incorporating the effect of core interactions, and the torque they produce on the approaching strings, into the Nambu-Goto description of the collision. An interesting, counterintuitive aspect is that the effective collision angle is smaller because of the torque. Our results suggest differences in network evolution and radiation output with respect to the predictions based on Nambu-Goto or beta = 1 Abelian Higgs dynamics.
A fundamental property of the Standard Model is that the Higgs potential becomes unstable at large values of the Higgs field. For the current central values of the Higgs and top masses, the instability scale is about $10^{11}$ GeV and therefore not a ccessible by colliders. We show that a possible signature of the Standard Model Higgs instability is the production of gravitational waves sourced by Higgs fluctuations generated during inflation. We fully characterise the two-point correlator of such gravitational waves by computing its amplitude, the frequency at peak, the spectral index, as well as their three-point correlators for various polarisations. We show that, depending on the Higgs and top masses, either LISA or the Einstein Telescope and Advanced-Ligo, could detect such stochastic background of gravitational waves. In this sense, collider and gravitational wave physics can provide fundamental and complementary informations. Furthermore, the consistency relation among the three- and the two-point correlators could provide an efficient tool to ascribe the detected gravitational waves to the Standard Model itself. Since the mechanism described in this paper might also be responsible for the generation of dark matter under the form of primordial black holes, this latter hypothesis may find its confirmation through the detection of gravitational waves.
154 - Nikolaos Tetradis 2016
We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppressio n of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا