ﻻ يوجد ملخص باللغة العربية
In the first part of this note we argue that ten dimensional consistency requirements in the form of a certain tadpole cancellation condition can be satisfied by KKLT type vacua of type IIB string theory. We explain that a new term of non-local nature is generated dynamically once supersymmetry is broken and ensures cancellation of the tadpole. It can be interpreted as the stress caused by the restoring force that the stabilization mechanism exerts on the volume modulus. In the second part, we explain that it is surprisingly difficult to engineer sufficiently long warped throats to prevent decompactification which are also small enough in size to fit into the bulk Calabi-Yau (CY). We give arguments that achieving this with reasonable amount of control may not be possible in generic CY compactifications while CYs with very non-generic geometrical properties might evade our conclusion.
It was shown in arXiv:1808.09428 that the modified 4d version of the KKLT model proposed in arXiv:1707.08678 is inconsistent for large values of the parameter $c$ advocated in arXiv:1707.08678, since there is a point in the moduli space where $|D_SW|
We propose a combined mechanism to realize both winding inflation and de Sitter uplifts. We realize the necessary structure of competing terms in the scalar potential not via tuning the vacuum expectation values of the complex structure moduli, but b
We study finite temperature correlation functions and quasinormal modes in a strongly coupled conformal field theory holographically dual to a small black hole in global Anti-de Sitter spacetime. Upon variation of the black hole radius, our results s
We present a non-supersymmetric theory with a naturally light dilaton. It is based on a 5D holographic description of a conformal theory perturbed by a close-to-marginal operator of dimension 4-epsilon, which develops a condensate. As long as the dim
We construct a vacuum of string theory in which the magnitude of the vacuum energy is $< 10^{-123}$ in Planck units. Regrettably, the sign of the vacuum energy is negative, and some supersymmetry remains unbroken.